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“ . . . but, he that hopes to be a good Angler must not onely bring an
inquiring, searching, observing wit, but he must bring a large
measure of hope and patience, and a love and propensity to the Art
it self; but having once got and practis’d it, then doubt not but
Angling will prove to be so pleasant, that it will prove like Vertue, a
reward to it self.”

Piscator speaking to Venator and Auceps
The Compleat Angler by Izaak Walton
The Modern Library Printing of the Fourth (1668) Edition
Random House, New York
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PREFACE

In writing this workbook, we have strived to follow in the tradition of Brooks et al.
(1984) of providing a guide to basic phylogenetic techniques as we now understand
them. The field of phylogenetics has undergone many changes, some philosophical and
some empirical, in the last 10 years. We hope to reflect some of these changes in this
workbook.

The workbook is arranged in a manner roughly functional and pedagogical. The
sophisticated reader, for example, might question why we spend so much time with
exercises (in Chapter 2) that do not really reflect the way “real” phylogenetic analysis is
performed or why so much space is given to Hennig Argumentation and Wagner
algorithms (Chapter 4) when they are either not a part of modern computer algorithms
or, at best, are only a starting point for finding the best hypothesis of common ancestry
for the particular data analyzed. Our answer, perhaps constrained by our own histories,
is that this approach seems to help at least some students learn phylogenetics.

Because we can only touch on the most basic topics and provide exercises for only a
few of these, we invite the student to explore the original literature; we have cited
sources in the body of the text and called attention to some papers in the “Chapter Notes
and References” sections at the end of each chapter. The absence of a paper in the text or
in the “Notes” section is no reflection on the worth of the paper. A compilation of all of
the useful papers relating to phylogenetics is quite beyond the scope of this workbook.

In addition to the exercises, we have provided immediate feedback sections termed
“Quick Quizzes.” We are interested in reader opinion regarding both the exercises and
the quick quizzes. We will incorporate suggestions, wherever possible, in subsequent
editions.

The major title, The Compleat Cladist, is inspired by the title The Compleat Angler
by Izaak Walton, a marvelous book published in many editions since 1653. Of course,
this book is not “complete” or even “compleat” in the archaic sense of representing a
book that teaches complete mastery of a subject. Phylogenetics is much too dynamic for
a small workbook to fulfill that criterion. Rather, we take our inspiration from Walton;
the compleat cladist is one who approaches the subject with energy, wonder, and joy.
Unfortunately, none of us are clever enough to come up with an analogy to the “Anglers
Song.”

We thank the following people for their valuable comments on part or all of the
earlier drafts of this workbook: the students of Biology 864 and Mike Bamshad
(University of Kansas), John Hayden (University of Richmond), Debbie McLennan
(University of Toronto), David Swofford (Illinois Natural History Survey), Charlotte
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Taylor, Richard Thomas, and Rafael Joglar (University of Puerto Rico), Wayne
Maddison (Harvard University), and Arnold Kluge (University of Michigan).

Special thanks are due to David Kizirian (University of Kansas) for working through
the answers to the exercises and to Kate Shaw and Kim Wollter (University of Kansas)
for their editorial skills. Partial support in the form of computer hardware and software
by the National Science Foundation (BSR 8722562) and the University of Kansas
Museum of Natural History is gratefully acknowledged. Mistakes in interpretation and
exercise answers are our responsibility, and we will be grateful for any suggestions and
corrections for incorporation into future editions.

E. O. Wiley, D. Siegel-Causey, D. R. Brooks, and V. A. Funk
Lawrence, Kansas; Toronto, Ontario; and Washington, D.C.
Summer, 1991
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CHAPTER 1

INTRODUCTION, TERMS, AND CONCEPTS

The core concept of phylogenetic systematics is the use of derived or apomorphic
characters to reconstruct common ancestry relationships and the grouping of taxa based
on common ancestry. This concept, first formalized by Hennig (1950, 1966), has been
slowly, and not so quietly, changing the nature of systematics. Why should we be
interested in this approach? What  about phylogenetic systematics is different from
traditional systematics? The answer is simple: classifications that are not known to be
phylogenetic are possibly artificial and are, therefore, useful only for identification and
not for asking questions about evolution.

There are two other means of making statements of relationship: traditional system-
atics and phenetics. Traditional systematic methods employ intuition. In practical
terms, intuition is character weighting. The scientist studies a group of organisms,
selects the character(s) believed to be important (i.e., conservative), and delimits
species and groups of species based on these characters. Disagreements usually arise
when different scientists think different characters are important. It is difficult to
evaluate the evolutionary significance of groups classified by intuition because we do
not know why they were created or whether they represent anything real in nature.
Because these groups may not be defined at all or may be defined by characters that
have no evolutionary significance, such groups may be artificial.

Phenetics is an attempt to devise an empirical method for determining taxonomic
relationships. In practice, phenetics is no better than traditional systematics in determin-
ing relationships because the various algorithms concentrate on reflecting the total
similarity of the organisms in question. Organisms that appear to be more similar are
grouped together, ignoring the results of parallel or convergent evolution and again
creating possibly artificial groups.

Phylogeneticists differ from traditional systematists in that we employ empirical
methods to reconstruct phylogenies and strictly evolutionary principles to form
classifications rather than relying on intuition or authority. We differ from pheneticists
in that our methods seek to find the genealogic relationships among the taxa we study
rather than the phenetic or overall similarity relationships.

What all this means is that the groups we discover are thought to be natural, or
monophyletic. Given any array of taxa, which two are more closely related to each other
than either is to any other taxon? We attempt to discover the common ancestry
relationships indirectly through finding evidence for common ancestry. This evidence
comes in the form of shared derived characters (synapomorphies). For example, among
Aves (birds), Crocodylia (alligators and crocodiles), and Squamata (lizards, snakes, and
amphisbaenians), Aves and Crocodylia are thought to be more closely related because
they share a number of synapomorphies thought to have originated in their common
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ancestor, which appeared after (later than) the common ancestor of all three taxa. This
relationship is shown in the form of a phylogenetic tree, a reconstruction of the
genealogic relationships.

In addition, phylogeneticists view the reconstructed tree (frequently termed a cla-
dogram) as the classification, and when expressing it in a hierarchical scheme, we insist
on maintaining monophyletic groups and sister-group relationships. The discovery of
monophyletic groups is the basic quest of phylogenetics. Going to all the trouble of
finding the groups and then throwing them away does not make sense to us.

Ever since the general theory of evolution gained acceptance, systematists have
sought the one evolutionary history for organisms and have tried to fit that history into
a hierarchical structure. We seek to reflect in our classifications the groups that we find
in nature. Because phylogenetic reasoning delimits groups based on common ancestry,
we can attempt to reconstruct evolutionary histories and from them develop a hierarchi-
cal ranking scheme. Phylogenetic groups are then a reflection of the order in nature.
Therefore, our classifications can be used for the study of other characters and for
further investigations in biogeography, coevolution, molecular evolution, rates of evo-
lution, ecology, etc. If you wish to use classifications to study evolution, they must
reflect the genealogy of the taxa in question. Groups that are potentially artificial cannot
be used in such investigations.

One of the greatest strengths of the phylogenetic system is that the method and
results are transparent, meaning that decisions, whether right or wrong, are based on
data that can be examined by any and all persons willing to understand the nature of the
data. The phylogenetic system does not depend on some special and mysterious
knowledge about organisms that only the “expert” can understand. A critic cannot claim
that your idea of the phylogenetic history of a group is wrong just because he has
studied the groups longer than you have. Of course, there are valid disagreements, and
there is room for change and improvement. But these disagreements are data based, not
opinion based. Phylogenetics, to put it crudely, is a put-up-or-shut-up scientific disci-
pline.

This workbook presents the basics of phylogenetic systematics as we use it today. We
also cite references for those interested in following some of the debates currently
underway among the proponents of phylogenetic systematics. We hope that this infor-
mation will stimulate you and illustrate the importance of systematics as the basis of
comparative biology. When you have finished this workbook, you should be able to
reread this introduction and understand what we are trying to accomplish. As an acid
test, go read Hennig (1966); it’s the way we got started, and it remains the classic in the
field.

All new scientific ideas and analytical methods are accompanied by new sets of terms
and concepts, which can be unsettling to the tyro and even more unsettling to the
experienced systematist who is called upon to abandon the “traditional” meanings of
terms and embrace new meanings. The basic rationale for adopting the definitions and
concepts presented in this workbook is twofold. First, it is vitally important for
systematics and taxonomy to be integrated into in the field of evolutionary theory. Willi
Hennig’s major motivation for reforming systematics and taxonomy was to bring them
in line with the Darwinian Revolution, making the results obtained through phyloge-
netic systematics directly relevant to studies in other fields of evolutionary research.
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Second, it is vitally important that the terms used in an empirical field be as unambigu-
ous as possible so that hypotheses are as clear as possible. With these rationales in mind,
we offer the following definitions for the basic terms in our field. They are largely taken
from Hennig (1966) or Wiley (1980, 1981a). Other more specialized terms will be
introduced in other chapters.

TERMS FOR GROUPS OF ORGANISMS

1. Taxon.—A taxon is a group of organisms that is given a name. The name is a
proper name. The form of many of these proper names must follow the rules set forth in
one of the codes that govern the use of names. The relative hierarchical position of a
taxon in a classification can be indicated in many ways. In the Linnaean system, relative
rank is denoted by the use of categories. You should not confuse the rank of a taxon with
its reality as a group. Aves is a taxon that includes exactly the same organisms whether
it is ranked as a class, an order, or a family.

2. Natural taxon.—A natural taxon is a group of organisms that exists in nature as a
result of evolution. Although there are many possible groupings of organisms, only a
few groupings comprise natural taxa. In the phylogenetic system, there are two basic
kinds of natural taxa: species and monophyletic groups. A species is a lineage. It is a
taxon that represents the largest unit of taxic evolution and is associated with an array of
processes termed speciation. A monophyletic group is a group of species that includes
an ancestral species and all of its descendants (Fig. 1.1a). Members of monophyletic
groups share a set of common ancestry relationships not shared with any other species
placed outside the group. In other terms, a monophyletic group is a unit of evolutionary
history. Examples include Mammalia and Angiospermae.

3. Clade.—A clade is a monophyletic group, i.e., a natural taxon.
4. Ancestral taxon.—An ancestral taxon is a species that gave rise to at least one

new daughter species during speciation, either through cladogenesis or reticulate
speciation. By cladogenesis we mean speciation that results in two or more branches on
the phylogenetic tree where there was only one branch before. By reticulate speciation
we mean the establishment of a new species through a hybridization event involving
two different species. A species that emerged from cladogenesis has one ancestral
species but a species emerging from reticulate speciation has two ancestral species. In
the phylogenetic system, only species can be ancestral taxa. Groups of species are
specifically excluded from being ancestral to other groups of species or to single
species. The biological rationale for this distinction is clear; there is an array of
processes termed speciation that allow for one species to give rise to another (or two
species to give rise to a species of hybrid origin), but there are no known processes that
allow for a genus or a family to give rise to other taxa that contain two or more species
(“genusation” and “familization” are biologically unknown). Thus, each monophyletic
group begins as a single species. This species is the ancestor of all subsequent members
of the monophyletic group.

5. Artificial taxon.—An artificial taxon  is one that does not correspond to a unit
involved in the evolutionary process or to a unit of evolutionary history. You will
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encounter two kinds of artificial groups. Paraphyletic groups are artificial because one
or more descendants of an ancestor are excluded from the group (Fig. 1.1b). Examples
include Dicotyledonae, Vermes, and Reptilia. Polyphyletic groups are artificial be-
cause the common ancestor is placed in another taxon (Fig. 1.1c). An example would be
the Homeothermia, a group composed of birds and mammals. Note that the term
“ancestor” is used in its logical sense, i.e., the ancestor is unknown but its inclusion or
exclusion can be deduced as a logical consequence of the grouping. The important
contrast is between monophyletic groups and nonmonophyletic groups. Paraphyletic
groups are as artificial as polyphyletic groups. Further, it is not always possible to
distinguish clearly the status of a group as either paraphyletic or polyphyletic.

6. Grade.—A grade is an artificial taxon. Grade taxa are frequently paraphyletic and
sometimes polyphyletic but are supposed to represent some level of evolutionary
progress, level of organization, or level of adaptation (e.g., Reptilia or Vermes).

7. Ingroup.—The ingroup is the group actually studied by the investigator (Fig.
1.2a). That is, it is the group of interest.

8. Sister group.—A sister group is the taxon that is genealogically most closely
related to the ingroup (Fig. 1.2a). The ancestor of the ingroup cannot be its sister
because the ancestor is a member of the group.

Fig. 1.1.—Examples of monophyletic (a), paraphyletic (b), and polyphyletic (c) groups.

a

b

c

M N O A B C M N O A B C

M N O A B C

M N O A B C

M N O A B C

M N O A B C
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9. Outgroup.—An outgroup is any group used in an analysis that is not included in
the taxon under study. It is used for comparative purposes, usually in arguments
concerning the relative polarity of a pair (or series) of homologous characters. The most
important outgroup is the sister group, and considerable phylogenetic research may be
needed to find the sister group. Usually more than one outgroup is needed in an
analysis. This will become apparent in Chapter 3.

M 

Ingroup

Sister Group
2nd Outgroup

Internode

Branch

Node

Root

 A

B

C

M

N

a

b

N A B C

Fig. 1.2.—A rooted (a) and unrooted (b) tree for the group ABC and two of its outgroups, N (the sister
group) and M.

Quick Quiz—Groups

Examine Fig. 1.1 and answer the following:

1. Why do we say that the group A+B+C and the group M+N are monophyletic?
2. Which taxa would have to be either included or excluded to change the paraphyletic

groups into monophyletic groups?
3. Can polyphyletic groups ever contain monophyletic groups within them?
4. Where are the ancestors in these diagrams?
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TERMS FOR THE RELATIONSHIPS  OF TAXA

1. Relationship.—In the phylogenetic system, the term relationship refers to the
genealogic or “blood” relationship that exists between parent and child or between
sister and brother. In other systems, relationship can also refer to similarity, with the
evolutionary implication that taxa that are more similar to each other are more closely
related. This meaning is specifically excluded from the phylogenetic system.

2. Genealogy and genealogic descent.—A genealogy is a graphic representation of
the descent of offspring from parents. Genealogic descent on the taxon level (i.e.,
between groups recognized as taxa) is based on the proposition that species give rise to
daughter species through an array of mechanisms termed speciation.

3. Tree.—A tree is a branching structure and, in our sense, might contain reticula-
tions as well as branches. A tree may be rooted (Fig. 1.2a) or unrooted (Fig. 1.2b) and is
composed of several parts. A branch is a line connecting a branch point to a terminal
taxon. A branch point, or node, represents a speciation event. This is true even if the
taxa joined by the branch point are higher taxa such as families or phyla, because higher
taxa originated as species. Branch points are sometimes represented by circles. An
internode is a line connecting two speciation events and represents at least one
ancestral species. (We say at least one because the statement is made relative to the
species and groups we actually know about. It is always possible to find a new species
or group of species that belongs to this part of the phylogeny. To make this addition, we
would bisect the internode and create the possibility for an additional ancestral species.)
The internode at the bottom of the tree is given the special term root. The term interval
is a synonym of internode and is used in the Wagner algorithm (see Chapter 4). A
neighborhood is an area of a tree relative to a particular taxon or taxa. In Fig. 1.2b,
taxon B is the nearest neighbor of taxa A and C. Note that A may or may not be the
sister of a monophyletic group B+C. This relationship cannot be established until the
root is specified.

4. Phylogenetic tree.—A phylogenetic tree is a graphic representation of the
genealogic relationships between taxa as these relationships are understood by a
particular investigator. In other words, a phylogenetic tree is a hypothesis of genealogic
relationships on the taxon level. Although it is possible for an investigator to actually
name ancestors and associate them with specific internodes, most phylogenetic trees
are common ancestry trees. Further, phylogenetic trees are hypotheses, not facts. Our
ideas about the relationships among organisms change with increasing understanding.

5. Cladogram.—Cladograms are phylogenetic trees. They have specific connota-
tions of implied ancestry and a relative time axis. Thus, a cladogram is one kind of
phylogenetic tree, a common ancestry tree. In some modifications of the phylogenetic
system, specifically what some have termed Transformed Cladistics, the cladogram is
the basic unit of analysis and is held to be fundamentally different from a phylogenetic
tree. Specifically, it is purely a depiction of the derived characters shared by taxa with
no necessary connotation of common ancestry or relative time axis.
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6. Venn diagram.—A Venn diagram is a graphic representation of the relationships
among taxa using internested circles and ellipses. The ellipses take the place of
internode connections. A typical Venn diagram is contrasted with a phylogenetic tree in
Fig. 1.3.

Quick Quiz—Relationships

Examine Fig. 1.2a and answer the following:

1. What is the sister group of the clade N?
2. What is the sister group of the clade M?
3. What is the sister group of a group composed of M+N?
4. Where is the hypothetical ancestor of the ingroup on the tree?
5. How many ancestors can a group have?
6. Draw a Venn diagram of Fig. 1.2a.

TERMS FOR CLASSIFICATIONS

1. Natural classification.—A classification containing only monophyletic groups
and/or species is a natural classification. A natural classification is logically consistent
with the phylogenetic relationships of the organisms classified as they are understood
by the investigator constructing the classification. That is, the knowledge claims
inherent in a natural classification do not conflict with any of the knowledge claims
inherent in the phylogenetic tree. The protocols for determining if a classification is
logically consistent with a phylogenetic tree are given in Chapter 6.

Aves Crocodylia Lepidosauria

Aves Crocodylia Lepidosauria

a

b

Fig. 1.3.—A phylogenetic tree (a) and a Venn diagram (b) of three groups of tetrapod vertebrates.
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2. Artificial classification.—An artificial classification is a classification containing
one or more artificial groups (i.e., one or more paraphyletic or polyphyletic groups). An
artificial classification is logically inconsistent with the phylogenetic relationships of
the organisms as they are understood by the investigator making the classification. That
is, some of the knowledge claims inherent in the classification conflict with knowledge
claims in the phylogenetic tree.

3. Arrangement.—An arrangement is a classification of a group whose phyloge-
netic relationships are not known because no investigator has ever attempted to recon-
struct the evolutionary history of the group. The vast majority of current classifications
are arrangements. A particular arrangement may turn out to be either a natural or an
artificial classification. Arrangements serve as interim and completely necessary ve-
hicles for classifying organisms until the phylogenetic relationships of these organisms
can be worked out.

4. Category.—The category of a taxon indicates its relative place in the hierarchy of
the classification. The Linnaean hierarchy is the most common taxonomic hierarchy
and its categories include class, order, family, genus, and species. The formation of the
names of taxa that occupy certain places in the hierarchy are governed by rules
contained in various codes of nomenclature. For example, animal taxa ranked at the
level of the category family have names that end in -idae, whereas plant taxa ranked at
this level have names that end in -aceae. It is important to remember that the rank of a
taxon does not affect its status in the phylogenetic system. To the phylogeneticist, all
monophyletic taxa are equally important and all paraphyletic and polyphyletic taxa are
equally misleading.

Classifications and arrangements are usually presented as hierarchies of names, with
relative position in the hierarchy (rank) noted by categories. However, these
classifications can be portrayed as tree diagrams and as Venn diagrams. The use of these
methods of presenting classifications is discussed in Chapter 6.

Quick Quiz—Classification

1. In the phylogenetic system, must the taxa be clades?
2. In the phylogenetic system, must categories be clades?
3. Which is more important, a phylum or a genus?

PROCESS TERMS

Three process terms are of particular importance in the phylogenetic system. Specia-
tion results in an increase in the number of species in a group. Speciation is not a single
process but an array of processes. Cladogenesis is branching or divergent evolution and
is caused by speciation. Anagenesis is change within a species that does not involve
branching. The extent to which anagenesis and cladogenesis are coupled is an interest-
ing evolutionary question but not a question that must be settled to understand the
phylogenetic system.
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TERMS FOR THE ATTRIBUTES OF SPECIMENS

1. Character.—A character is a feature, that is, an observable part of, or attribute of,
an organism.

2. Evolutionary novelty.—An evolutionary novelty is an inherited change from a
previously existing character. The novelty is the homologue of the previously existing
character in an ancestor/descendant relationship. As we shall see below, novelties are
apomorphies at the time they originate.

3. Homologue.—Two characters in two taxa are homologues if one of the following
two conditions are met: 1) they are the same as the character that is found in the ancestor
of the two taxa or 2) they are different characters that have an ancestor/descendant
relationship described as preexisting/novel. The ancestral character is termed the
plesiomorphic character, and the descendant character is termed the apomorphic
character. The process of determining which of two homologues is plesiomorphic or
apomorphic lies at the heart of the phylogenetic method and is termed character
polarization or character argumentation. Three (or more) characters are homologues
if they meet condition 2.

4. Homoplasy.—A homoplasy is a similar character that is shared by two taxa but
does not meet the criteria of homology. Every statement of homology is a hypothesis
subject to testing. What you thought were homologues at the beginning of an analysis
may end up to be homoplasies.

5. Transformation series.—A transformation series (abbreviated TS in some tables
and exercises) is a group of homologous characters. If the transformation series is
ordered, a particular path of possible evolution is specified but not necessarily the
direction that path might take. All transformation series containing only two homolo-
gous characters (the binary condition) are automatically ordered but not necessarily
polarized (contrast Fig. 1.4a and Fig. 1.4b). Transformation series having more than
two characters are termed multicharacter (or multistate) transformation series. If a
multistate transformation series is unordered (Fig. 1.4c), several paths might be pos-
sible. Ordered transformation series are not the same as polarized transformation series
(compare Figs. 1.4d and 1.4e). An unpolarized transformation series is one in which
the direction of character evolution has not been specified (Figs. 1.4a, c, d). A polarized
transformation series is one in which the relative apomorphy and plesiomorphy of
characters has been determined by an appropriate criterion (Figs. 1.4b, e). It is possible
for a transformation series to be both unordered and polarized. For example, we might
know from outgroup comparison that 0 is the plesiomorphic state, but we might not
know whether 1 gave rise to 2, or vice versa, or whether 1 and 2 arose independently
from 0. Ordering and polarization of multicharacter transformation series can become
very complicated, as we shall see in Chapter 3. Our use of the convention “transforma-
tion series/character” differs from that of many authors who use “character” as a
synonym for “transformation series” and “character state” as a synonym for “charac-
ter.” We use “transformation series/character” instead of “character/character state” in
our research and in this workbook for philosophical reasons. The “character/character
state” convention reduces “character” to a term that does not refer to the attributes of
organisms but instead to a class construct that contains the attributes of organisms,
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homologues or not. For example, dandelions do not have “color of flower” as an
attribute; they have “yellow flowers.” We adopt “transformation series/character”
because it explicitly avoids the construction of character classes and implicitly encour-
ages the investigator to use characters hypothesized to be homologues of each other.

6. Character argumentation.—Character argumentation is the logical process of
determining which characters in a transformation series are plesiomorphic and which
are apomorphic. Character argumentation is based on a priori arguments of an “if, then”
deductive nature and is based on outgroup comparison. This process is frequently
termed “polarizing the characters.” Polarity  refers to which of the characters is
plesiomorphic or apomorphic. Character argumentation will be covered in detail in
Chapter 3.

7. Character optimization.—Character optimization consists of a posteriori argu-
ments as to how particular characters should be polarized given a particular tree
topology. Character optimization might seem a priori when used in a computer pro-
gram, but it is not.

8. Character code and data matrix.—Phylogenetic systematists are quickly convert-
ing to computer-assisted analysis of their data. When using a computer, the investigator
produces a data matrix . Usually, the columns of the matrix are transformation series
and the rows are taxa. A code is the numerical name of a particular character. By
convention, the code “1” is usually assigned to the apomorphic character and “0” to the
plesiomorphic character of a transformation series if the polarity of that series is
determined (=hypothesized) by an appropriate method of polarization. If the transfor-
mation series consists of more than two characters, additional numerical codes are
assigned. Alternatively, the matrix might be coded using binary coding as discussed in
Chapter 3. There are many ways of reflecting the code of a character when that
character is placed on a tree. We will use the following convention: characters are
denoted by their transformation series and their code. The designation 1-1 means
“transformation series 1, character coded 1.” Some basic ways of coding characters are
discussed in Chapter 3.

0 1 2

0 1 2

0 1

0 1

a

b

d

e

0

1 2c

Fig. 1.4.—Characters. a. Unpolarized binary characters. b. Polarized binary characters. c. An
unordered transformation series of three characters. d. The same transformation series ordered but not
polarized. e. The same transformation series ordered and polarized.
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9. Tree length.—The length of a tree is usually considered the number of evolution-
ary transformations needed to explain the data given a particular tree topology.

You will probably need some time to assimilate all of the definitions presented. A
good strategy is to review this chapter and then go to Chapter 2, working your way
through the examples. We have found that deeper understanding comes from actual
work. Although we cannot pick a real group for you to work on, we have attempted the
next best thing, a series of exercises designed to teach basic phylogenetic techniques
that we hope will mimic real situations as closely as possible.

CHAPTER NOTES AND REFERENCES

1. There is no substitute for reading Hennig (1966). We suggest, however, that you
become familiar with most of the basics before attempting to read the 1966 text. Hennig
(1965) is the most accessible original Hennig. Other classics include Brundin (1966)
and Crowson (1970). An interesting analysis of Hennig’s impact on systematics can be
found in Dupuis (1984). A considerable portion of the history of phylogenetic thought
(and indeed post-1950 systematics) can be followed in a single journal, Systematic
Zoology. We highly recommend that students examine this journal.

2. Post-Hennig texts that are suitable for beginners are Eldredge and Cracraft
(1980), Wiley (1981a), Ridley (1985), Schoch (1986), Ax (1987), and Sober (1988a). A
more difficult text written from the point of view of the transformed cladists is Nelson
and Platnick (1981).

3. A very readable review of the entire field of systematics is Ridley (1985), whose
defense of phylogenetics and criticisms of traditional (evolutionary) taxonomy, phenet-
ics, and transformed cladistics are generally on the mark.

QUICK  QUIZ  ANSWERS

Groups

1. They are monophyletic because no descendant of their respective common ancestor is left out of
the group.

2. To make the group O+A+B monophyletic, you would have to include C. To make the group
N+O+A+B+C monophyletic, you could either include M or exclude N.

3. Yes; e.g., N+A+B+C contains the monophyletic group ABC.
4. You were pretty clever if you answered this one because we haven’t covered it yet. The ancestors

are represented by internodes between branches. Obviously they are hypothetical because none of them
are named.

Quick Quiz—Characters

1. How would the transformation series in Fig. 1.4c look if it were polarized and unordered?
2. Is character “1” in Fig. 1.4e apomorphic or plesiomorphic?
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Classification

1. Only clades (monophyletic groups and species) are permitted in the phylogenetic system. Grades
are specifically rejected. As you will see in Chapter 6, this is because classifications that contain even a
single grade are logically inconsistent with the phylogeny of the group containing the grade.

2. Categories are not taxa. They are designations of relative rank in a classification. As such,
categories are neither clades nor grades.

3. All monophyletic taxa are equally important and interesting to the phylogeneticist.

Characters

1.

Relationships

1. The ingroup (A+B+C) is the sister group of N.
2. N plus the ingroup is the sister group of M.
3. A group composed of M and N is paraphyletic. Paraphyletic groups are artificial and thus cannot

have sister groups.
4. The internode labeled “Internode.”
5. A bunch, stretching back to the origin of life. But we usually refer only to the immediate common

ancestor.
6.

M N A B C

0

1 2

2. Character 1 is both apomorphic and plesiomorphic. It is apomorphic relative to 0 and
plesiomorphic relative to 2.



CHAPTER 2

BASIC PHYLOGENETIC TECHNIQUES

Phylogenetic systematists work under the principle that there is a single and histori-
cally unique genealogic history relating all organisms. Further, because characters are
features of organisms, they should have a place on the tree representing this history. The
proper place for a character on the tree is where it arose during evolutionary history. A
“proper” tree should be one on which the taxa are placed in correct genealogic order and
the characters are placed where they arose. For example, in Fig. 2.1 we show a tree of
some major land plant groups with some of their associated characters. This tree can be
used to explain the association of characters and taxa. The characters xylem and phloem
are placed where they are because the investigator has hypothesized that both arose in
the common ancestor of mosses and tracheophytes. In other words, they arose between
the time of origin of the hornworts and its sister group. Xylem and phloem are thought
to be homologous in all plants that have these tissues. Thus, each appears only once, at

Fig. 2.1.—The phylogenetic relationships among several groups of plants (after Bremer, 1985).
Synapomorphies and autapomorphies for each group are listed. Some characters are not shown.
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the level of the tree where each is thought to have arisen as an evolutionary novelty.
Now, if we did not have this tree but only the characters, we might suspect that all of the
taxa that have xylem and phloem shared a common ancestor that was not shared by taxa
that lack xylem and phloem. Our suspicion is based on a complex of hypotheses,
including the fact that xylem and phloem from different plants are very similar, being
composed of a few basic cell types or obvious derivatives of these cell types. In the
phylogenetic system, such detailed similarity is always considered evidence for homol-
ogy, which necessarily implies common origin. This concept is so important that it has
been given the name Hennig’s Auxiliary Principle (Hennig, 1953, 1966).

Hennig’s Auxiliary Principle. —Never assume convergence or parallel evolution,
always assume homology in the absence of contrary evidence.

This principle is a powerful one. Without it, we must pack up and go home because
we could exclude any similarity that we don’t wish to deal with by asserting that “it
probably arose by convergent evolution.” Of course, just because we use Hennig’s
Auxiliary Principle doesn’t mean that we believe that convergences are rare or nonex-
istent. Convergences are facts of nature and are rather common in some groups. But to
pinpoint convergence, you first have to have a tree, and without Hennig’s Auxiliary
Principle you will never get to a tree because you will be too worried that the characters
you study are convergences. Hennig is simply suggesting that you sit back and let his
method worry about convergences rather than doing something rash and ad hoc.

Back to the xylem and phloem. With Hennig’s Auxiliary Principle, you can deduce
that plants that have xylem and phloem shared a common ancestor not shared with other
plants. Of course, you don’t make such a deduction in a vacuum. You “know” that more
primitive plants lack xylem and phloem, and thus it’s a good guess that having xylem
and phloem is more derived than lacking xylem and phloem. This deduction is a
primitive sort of outgroup comparison, which we will discuss in some detail in Chapter
3. For now, we want you to consider another principle.

Grouping Rule.—Synapomorphies are evidence for common ancestry relationships,
whereas symplesiomorphies, convergences, and parallelisms are useless in providing
evidence of common ancestry (Hennig, 1966).

Intuitively, you know convergences and parallelisms (both termed homoplasies) are
useless for showing common ancestry relationships because they evolved indepen-
dently. However, plesiomorphies are also homologies. So, why can’t all homologies
show common ancestry relationships? The answer is that they do. It’s just that
symplesiomorphies can’t show common ancestry relationships at the level in the
hierarchy you are working at because they evolved earlier than any of the taxa you are
trying to sort out. In addition, they have already been used at the level where they first
appeared. If they hadn’t been used, you would not be where you are. For example, you
would never hypothesize that pineapples are more closely related to mosses than to
some species of mistletoe based on the plesiomorphy “presence of chlorophyll.” If you
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accepted that as valid evidence, then you would have to conclude that pineapples are
also more closely related to green algae than to mistletoes. A common complaint by
traditional taxonomists is that “cladists” use only part of the data available to them
(Cronquist, 1987). This is not true, as the above example demonstrates. What we do is
to attempt to find the correlation between the relative age and origin of characters.

Finally, we have to consider how to combine the information from different transfor-
mation series into hypotheses of genealogic relationships. There are several ways of
accomplishing this, depending on the algorithm you use. We will find out more about
this as we proceed through the workbook. For now, we will use an old-fashioned (and
perfectly valid) grouping rule that goes back to the roots of the phylogenetic method,
the inclusion/exclusion rule. This rule is implicit in the early work of Hennig (1966), as
well as being used as an explicit rule in the much later group compatibility algorithm
developed by M. Zandee (Zandee and Geesink, 1987).

Inclusion/Exclusion Rule.—The information from two transformation series can be
combined into a single hypothesis of relationship if that information allows for the
complete inclusion or the complete exclusion of groups that were formed by the
separate transformation series. Overlap of groupings leads to the generation of two or
more hypotheses of relationship because the information cannot be directly com-
bined into a single hypothesis.

The inclusion/exclusion rule is directly related to the concept of logical consistency.
Trees that conform to the rule are logically consistent with each other. Those trees that
show overlap are logically inconsistent with each other. This can be shown graphically
using Venn diagrams.

You can get an idea of how this rule works by studying the examples in Fig. 2.2. In
Fig. 2.2a, we have four characters and four trees. The first tree contains no character
information. It is logically consistent with any tree that has character information. The
second tree states that N, O, and P form a monophyletic group based on characters from
two transformation series (1-1 and 2-1). The third tree states that O and P form a
monophyletic group based on two additional characters (3-1 and 4-1). Note that O+P is
one of the possible groupings that could be found in the group N+O+P, and N+O+P
completely includes O+P. The fourth tree combines these logically consistent hypoth-
eses of relationship. Thus, these data lead to two groupings that are logically consistent
with each other. The second example, Fig. 2.2b, shows the result of the inclusion of two
smaller monophyletic groups (S+T) and (U+V) within a larger group (S–V). In Fig.
2.2c, we have an example of the violation of the inclusion/exclusion rule. All six
transformation series imply groupings that can be included within the larger group A–
D. Both C+B and C+D can be included within the group B+C+D. However, their
knowledge claims conflict, and the groups overlap (Fig. 2.2d). Transformation series 1-
1 and 2-1 imply a group C+B while excluding D, and transformation series 3-1 and 4-1
imply a group C+D while excluding B. C is included in two different groups, as shown
by the Venn diagram in Fig. 2.2d. As a result, there are two equally parsimonious trees
that are logically inconsistent with each other. To resolve which of these trees (or
another tree) is preferable, we would have to analyze more data.



KU MUSEUM OF NATURAL HISTORY, SPECIAL PUBLICATION No. 1916

OR=

 

1-1

2-1
3-1

4-1
5-1

1-1

5-1

4-1 2-1
3-1

1-1
2-1

3-1
4-1

3-1
4-12-1

1-1

5-1
6-1

3-1
4-1

 
1-1
2-1

M N O PM N O PM N O P M N O P

+ + =

S T U VU V S TS T U VS T U V

+ + =

5-1
6-1

4-1
3-1

A B C D

A B C DA B C DA D C B

5-1
6-1

2-1
1-1

A D C B

++

A B C D

a

b

c

d

Fig. 2.2.—Three examples (a–c) of the use of the inclusion/exclusion rule for combining the
information of different transformation series into trees. d. A Venn diagram showing the logical
inconsistency in c.
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Quick Quiz—Basic Rules of Analysis

1. Does it follow from Hennig’s Auxiliary Principle that birds and insects share a common
ancestor not shared with, say, crocodiles because both have wings and are capable of
flight?

2. Lizards and crocodiles have amniotic eggs. Does it follow from the Grouping Rule that
lizards and crocodiles share a common ancestor?

3. How can you tell that “presence of chlorophyll a” is a plesiomorphy rather than a
synapomorphy?

SAMPLE  ANALYSES

We will cover the complexities of character argumentation in the next few chapters.
The exercises below are based on the proposition that the outgroup has plesiomorphic
characters. You can determine which character of the transformation series is
plesiomorphic by simple inspection of the outgroup. (By the time you get through with
Chapter 3, you will see that such a simple rule doesn’t always hold, but it’s good enough
to get through these exercises.) Grouping is accomplished by application of the Group-
ing Rule. We will first take you through two exercises. Then we present a series of data
matrices for you to work with. (Solutions to all exercises are in the back.)

Example 2.1.—The relationships of ABCidae.

1. Examine transformation series (TS) 1 in Table 2.1. It is composed of characters in
the first column of the data matrix. We can draw a tree with the groupings implied by the
synapomorphy found in the transformation series. We can do the same for TS 2. Our
results look like the two trees to the left in Fig. 2.3. Because both imply the same
groupings, we can say that they are topologically identical. That is, they are isomor-
phic. The combination of the two trees, by applying the Grouping Rule, is the tree on
the right. We can calculate a tree length for this tree by simply adding the number of
synapomorphies that occur on it. In this case, the tree length is two steps.

Table 2.1.—Data matrix for ABCidae (Example 2.1).

Transformation series
Taxon 1 2 3 4 5 6 7

X (outgroup) 0 0 0 0 0 0 0
A 1 1 0 0 0 0 0
B 1 1 1 1 0 0 0
C 1 1 1 1 1 1 1
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2. If we inspect TS 3 and TS 4, we see that the synapomorphies have identical
distributions, both implying that B and C form a monophyletic group (Fig. 2.4). If we
put both of these synapomorphies on a tree, the results should look like the tree on the
right in Fig. 2.4. What is the length of this tree?

+ =1-1

X A B C

2-1

X A B C

1-1
2-1

X A B C

Fig. 2.3.—Trees for transformation series 1 and 2 (Example 2.1).

=+3-1

X A B C

4-1

X A B C

3-1
4-1

X A B C

Fig. 2.4.—Trees for transformation series 3 and 4 (Example 2.1).

3. Note that only C has the apomorphies in TS 5, 6, and 7. Unique (single occur-
rence) apomorphies are termed autapomorphies. They are not useful for grouping, as
we can see in Fig. 2.5, but they are useful for diagnosing C. Autapomorphies also count
when figuring tree length but not when comparing trees. The length of this tree is three
steps.

Fig. 2.5.—Tree for transformation series 5, 6, and 7 (Example 2.1).

4. We now have three different tree topologies. If we look at them closely, we can see
that although the three trees are topologically different, they do not contain any
conflicting information. For example, the tree implied by TS 5–7 does not conflict with
the trees implied by the other transformation series because all that TS 5–7 imply is that

5-1
6-1

7-1

X A B C
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C is different from the other four taxa. Further, TS 1 and 2 do not conflict with TS 3 and
4 because TS 1 and 2 imply that A, B, and C form a monophyletic group, whereas TS 3
and 4 imply that B and C form a monophyletic group but say nothing about the
relationships of A or the outgroup, X. Trees that contain different but mutually agree-
able groupings are logically compatible or fully congruent. They can be combined
without changing any hypothesis of homology, and the length of the resulting tree is the
sum of the lengths of each subtree. For example, we have combined all of the informa-
tion in the data matrix to produce the tree in Fig. 2.6. Its length is seven steps, the total
of the number of steps of the subtrees.

1-1
2-1

3-1
4-1

5-1
6-1

7-1

X A B C

Fig. 2.6.—The best estimate of the common ancestry relationships of A, B, and C, given the data in
Example 2.1.

Fig. 2.7.—Tree for transformation series 1 and 2 (Example 2.2).

1. TS 1 and TS 2 imply that M, N, and O form a monophyletic group as shown in Fig. 2.7.

1-1
2-1

X M N O

Example 2.2.—Analysis of MNOidae.

The first thing you should notice about this matrix (Table 2.2) is that it has more
characters scored as “1.” Let’s work through it.

Table 2.2.—Data matrix for MNOidae (Example 2.2).

Transformation series
Taxon 1 2 3 4 5 6 7

X (outgroup) 0 0 0 0 0 0 0
M 1 1 0 0 1 1 1
N 1 1 1 1 1 1 1
O 1 1 1 1 0 0 0
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2. TS 3 and TS 4 imply that N and O form a monophyletic group (Fig. 2.8).

Fig. 2.8.—Tree for transformation series 3 and 4 (Example 2.2).

Fig. 2.9.—Tree for transformation series 5, 6, and 7 (Example 2.2).

3-1
4-1

X M N O

3. Finally, TS 5, 6, and 7 imply that M and N form a monophyletic group (Fig. 2.9).

 

5-1
6-1

7-1

X O N M

4.  At this point you should suspect that something has gone wrong. TS 3 and 4 imply
a monophyletic group that includes N and O but excludes M, whereas TS 5–7 imply a
monophyletic group that includes M and N but excludes O. There must be a mistake,
because we have violated the inclusion/exclusion rule. In such a situation, we invoke
another important principle of phylogenetic analysis: there is only one true phylog-
eny. Thus, one of our groupings must be wrong. (In fact, they might both be wrong, but
the Auxiliary Principle keeps us going until such time that we demonstrate that both are
wrong.) In this situation, we are faced with two logically incompatible trees (Fig. 2.10).
Note that there is some congruence because both trees have the apomorphies of the first
two transformation series.

1-1
2-1

5-1
6-1

7-1

X O N M

2-1
1-1

3-1
4-1

X M N O

Fig. 2.10.—Trees for the two different sets of consistent transformation series (Example 2.2).
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5. You should have guessed by now that neither of the trees shown above is really a
complete tree. The tree on the right lacks TS 5, 6, and 7, and the one on the left lacks TS
3 and 4. Leaving out characters is not acceptable. About the only way that you can get
into more trouble in phylogenetic analysis is to group by symplesiomorphies. Before
we start, consider how characters might be homoplasious. A character might be a
convergence/parallelism, or it might be a reversal to the “plesiomorphic” character. We
must consider both kinds of homoplasies. In Fig. 2.11a, TS 3 and 4 are put on the tree
under the assumption that 3-1 and 4-1 arose independently (i.e., via convergence/
parallelism). In Fig. 2.11b, we have placed 5-1, 6-1, and 7-1 on the alternate tree as
convergences. In Fig. 2.11c, we assume that 3-1 and 4-1 arose in the common ancestor of
the group and that M has reverted to the plesiomorphic character. Thus, 3-0 and 4-0
appear on the tree as autapomorphies of M. We have done the same thing for O in Fig.
2.11d for TS 5–7, given the alternative hypothesis.

1-1
2-1

5-1
6-1

7-1

4-1
4-1

3-1
3-1

X O M N

2-1
1-1

5-1
6-1

7-1

5-1
6-1

7-1

3-1
4-1

X M O N

1-1
2-1

5-1
6-1

7-1

4-0

4-1
3-1

3-0

X O M N X M O N

2-1
1-1

5-1
6-1
7-1

5-0
6-0

7-0

3-1
4-1

a b

c d

Fig. 2.11.—Alternative hypotheses of the relationships of M, N, and O based on characters of
Example 2.2.      = character showing convergence/parallelism or reversal (homoplasies).

6. The question is—which of these trees should we accept? That turns out to be a
rather complicated question. If we adhere to the Auxiliary Principle, we should strive
for two qualities, the greatest number of homologies and the least number of homopla-
sies. These qualities are usually consistent with each other; that is, the tree with the
greatest number of synapomorphies is also the tree with the least number of homopla-
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sies. But you can find exceptions to this. Fortunately, both of these qualities are related
to tree length. When you count the number of steps in the four trees in Fig. 2.11, you
will find that trees a and c have nine steps, and trees b and d have 10 steps. We accept
trees a and c as the best estimates of the phylogeny because they have a shorter length
and thus the greatest number of statements of homology and the fewest number of
statements of homoplasy for the data at hand. Note that such statements are relative only
to trees derived from the same data set. The Auxiliary Principle coupled with the
principle that there is only one phylogeny of life carried us to this point. Methodologi-
cally, we have employed the principle of parsimony. In the phylogenetic system, the
principle of parsimony is nearly synonymous with the Auxiliary Principle. We can see
three additional characteristics. First, trees a and c are topologically identical. There-
fore, the common ancestry relationships hypothesized are identical. Second, these two
trees make different claims concerning character evolution. Third, they are equally
parsimonious, therefore we cannot make a choice about character evolution unless we
employ some parsimony criterion other than tree length.

7. Finally, we can evaluate the performance of each character originally coded as a
synapomorphy by calculating a consistency index for it. The consistency index (CI) of
a character is simply the reciprocal of the number of times that a character appears on
the tree. The CI is a favorite summary “statistic” in computer programs such as PAUP
(Swofford, 1990) and MacClade (Maddison and Maddison, in press); therefore, it is
good to practice some hand calculations so that you will know how the CI works. We
will discuss this index and other measures of tree comparisons in Chapter 5. For
example, in one most parsimonious tree (Fig. 2.11a), the apomorphy coded 1 in TS 3
appears twice, so its CI is

For a given tree, we can see that a character is not really a synapomorphy by simple
inspection of its CI. True homologues (real synapomorphies) have CIs of 1.0. Of
course, our best estimates of true homologues come a posteriori, that is, in reference to
the best estimate of common ancestry relationships. We do not know in advance that a
particular derived similarity will turn up with a CI less than 1.0.

EXERCISES

For each of the exercises below do the following:

1. Derive trees for each transformation series or each set of transformation series
with the same distribution of synapomorphies (like TS 1 and TS 2 in Example 2.1).

2. Combine the logically consistent subtrees into the shortest tree or trees accounting
for all of the transformation series. Don’t forget to account for the homoplasies as well
as the synapomorphies and autapomorphies. In some data matrices, there will only be
one such tree, in others there will be two. Tip:  Search the trees obtained above for
groups that reoccur. Use these first (for example, sus+tus and vus+uus in Exercise 2.1).

CI = =
0.5.

1
2



BASIC PHYLOGENETIC TECHNIQUES 23

Table 2.3.—Data matrix for analysis of Sus (Exercise 2.1).

Transformation series
Taxon 1 2 3 4 5 6 7 8 9 10 11 12

Outgroup 0 0 0 0 0 0 0 0 0 0 0 0
S. sus 1 0 1 1 1 1 1 0 1 0 0 0
S. tus 1 1 1 1 1 1 0 0 0 1 0 0
S. uus 1 0 1 1 0 0 0 0 0 0 0 0
S. vus 1 1 0 0 0 0 1 1 0 0 1 0
S. wus 1 1 0 0 0 0 1 1 0 0 0 1

EXERCISE 2.2.—Analysis of Midae (Table 2.4).

3. Calculate the length of each tree and the CI for each character originally coded as
a synapomorphy.

EXERCISE 2.1.—Analysis of Sus (Table 2.3).

EXERCISE 2.3.—Analysis of Aus (Table 2.5).

Table 2.4.—Data matrix for analysis of Midae (Exercise 2.2).

Transformation series
Taxon 1 2 3 4 5 6 7 8 9 10 11

Outgroup 0 0 0 0 0 0 0 0 0 0 0
Mus 1 1 0 1 1 1 0 0 1 1 1
Nus 1 1 0 0 1 1 1 0 0 1 1
Ous 1 1 0 0 1 1 1 0 0 1 1
Pus 0 1 1 1 0 0 0 1 0 0 0
Qus 1 1 1 1 0 1 1 0 0 0 0
Rus 1 1 1 1 0 0 1 0 0 0 0

Table 2.5.—Data matrix for analysis of Aus (Exercise 2.3).

Transformation series
Taxon 1 2 3 4 5 6 7 8 9 10

Outgroup 0 0 0 0 0 0 0 0 0 0
A. aus 1 0 1 0 1 1 0 0 0 0
A. bus 1 0 1 0 1 0 1 0 0 0
A. cus 1 1 1 0 0 0 0 0 0 1
A. dus 1 1 0 1 0 0 0 1 0 0
A. eus 1 1 0 1 0 0 1 0 1 0
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CHAPTER NOTES AND REFERENCES

1. All of the texts cited in Chapter 1 cover the fundamentals of reconstructing
phylogenetic relationships, but they each do so from a slightly to very different point of
view. The inclusion/exclusion criterion is not usually seen in the form we present it.
Indeed, it is not the way one usually goes about doing phylogenetic reconstructions. We
adopted our approach because it seemed to be the simplest one to use to teach basic
principles. The inclusion/exclusion approach is explicit in the “group compatibility”
approach of Zandee and Geesink (1987).

2. Considerable controversy surrounds the philosophical nature of phylogenetic
hypothesis testing and its relationship to parsimony. Farris (1979, 1983), Sober (1983),
Kluge (1984, 1989), and Brooks and Wiley (1988) present parsimony as the relevant
criterion for judging competing hypotheses. This is in direct contrast to Wiley (1975,
1981a), who attempted to reconcile parsimony and the hypothetico-deductive approach
of Popper (1965), or to Felsenstein (1978, 1983), who argued that parsimony might not
be the preferred criterion. Most of this controversy has been summarized by Sober
(1988a).

QUICK  QUIZ  ANSWERS

1. Not when you examine the wings in detail. Insect wings have a completely different structure
when compared with bird wings. They are so different that the best hypothesis is that the wings are not
homologous. This leads to the hypothesis that flight has evolved independently in each group. Further,
there is much evidence in the form of other characters that leads to the hypothesis that flying insects are
more closely related to other insects that do not have wings and that birds are more closely related to
other vertebrates.

2. Yes, it does follow. However, many other vertebrate groups, such as birds and mammals, also have
an amniotic egg. Thus, while lizards and crocodiles certainly share a common ancestor, we cannot
hypothesize that they share a common ancestor not shared also with birds and mammals. Rather, the
amniotic egg is a character that provides evidence for a common ancestry relationship among all
amniotes (as a synapomorphy), and its presence in lizards and crocodiles is a plesiomorphic homologous
similarity.

3. You can deduce that the presence of chlorophyll a is a plesiomorphy in the same manner that you
can deduce whether a character is an apomorphy, by outgroup comparison. This is covered in the next
chapter.



CHAPTER 3

CHARACTER ARGUMENTATION AND CODING

This chapter is designed to teach the following skills: 1) interpretation of a phyloge-
netic tree in terms of nodes and internodes, 2) polarization of characters at nodes and
internodes on the phylogenetic tree according to the criterion of phylogenetic parsi-
mony as evidenced by outgroup comparison, and 3) character coding.

OUTGROUP COMPARISON

Hennig (1966) and Brundin (1966) characterized the essence of phylogenetic analy-
sis as the “search for the sister group.” They recognized that if you can find the closest
relative or relatives of the group you are working on, then you have the basic tools for
deciding which characters are apomorphic and which are plesiomorphic in a transfor-
mation series. The argument goes something like this. As an investigator, you see that
members of your group have two different but homologous characters, “round pupils”
and “square pupils.” As a phylogeneticist, you know that one of these characters, the
apomorphic one, might diagnose a monophyletic group, but both cannot (the Grouping
Rule). If you think about it, Hennig’s reasoning becomes clear. If you find square pupils
in the sister group of the taxon you are studying, then it is fairly clear that “square
pupils” is older than “round pupils,” and if this is true, then “square pupils” must be the
plesiomorphic character in the transformation series. Therefore, reasoned Hennig, the
characteristics of the sister group are vital in making an intelligent decision regarding
polarity within the taxon studied. The simplest rule for determining polarity can be
stated in the following way.

Rule for Determining Relative Apomorphy.—Of two or more homologous charac-
ters found within a monophyletic group, that character also found in the sister group
is the plesiomorphic character, and the one(s) found only in the ingroup is (are) the
apomorphic one(s).

As it turns out, actual polarity decisions can be a little more complicated than our
simple example. What if, for example, we don’t know the exact sister group but only an
array of possible sister groups? What if the sister group is a monophyletic group, and it
also has both characters? What if our group is not monophyletic? What if “square
pupils” evolved in the sister group independently?

POLARITY  DECISIONS

The answers to these questions depend on our ability to argue character polarities
using some formal rules. The most satisfactory discussion of these rules was published
by Maddison et al. (1984). We will present the case developed by them for situations
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where the phylogenetic relationships among the outgroups and the relationships of
these taxa to the ingroup are known. Some handy shortcuts, such as the “doublet rule,”
will also be covered. However, before we can examine these rules, we need to learn
some terms.

The ingroup node (IG node) represents the ancestor of the taxon we will eventually
be analyzing, once we determine the polarities of our transformation series. The same
characters are assigned to the IG node as would be assigned to the ancestral internode,
and the terms are interchangeable. If we determine that “square pupils” is primitive,
then “square pupils” is assigned to the IG node. To know what is plesiomorphic within
the group, we only need to know what character was found at the IG node. In this case,
because “square pupils” is assigned to the IG node, the character “round pupils” can be
used to diagnose a possible monophyletic group within the IG. Unfortunately, the
ancestor isn’t around, and thus we must infer what character it had. In Fig. 3.1, the
character “square pupils” is coded “a,” and “round pupils” is coded “b.” The outgroup
node (OG node) is the node immediately below the IG node. Don’t be confused (like
some of our students) and think that the OG node refers to characters that are associated
with the IG internode; instead, the OG node is associated with characters of the
internode immediately below it (in a manner similar to the IG node). So, the general
rule is the internode is associated with the node directly above it. This is important
because characters are usually put on internodes rather than nodes; therefore, it is
important to remember that these characters belong to the node above them rather than
the node below them.

Characters are designated by small letters and are placed where taxa are usually
labeled. Letters are used purely as a heuristic device and to avoid connotations of

Fig. 3.1.—a. Tree illustrating some general terms used in this chapter. b. Known  outgroup
relationships. c. Unknown outgroup relationships. d. A decisive character polarity decision with “a” at
the OG node. e. An equivocal character polarity decision with “a,b” at the OG node.

IG node

OG node

IG internode

 OG IG

a

a b a a characters of a TS

 OGs IG

b

 OGs IG

c
a

a a a,b

d
a,b

b a a,b

e
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primitive and derived. The ingroup in Fig. 3.1a is indicated by a polytomy because we
presume that the relationships among members are unknown. In all other diagrams, the
ingroup is indicated by a shaded triangle, which means exactly the same thing as the
polytomy but is easier to draw. Note that the ingroup always has both characters. The
relationships among outgroups can either be resolved (Fig. 3.1b) or unresolved (Fig.
3.1c). A decision regarding the character found at the outgroup node may be either
decisive (Fig. 3.1d) or equivocal (Fig. 3.1e). If decisive, then we know that the best
estimate of the condition found in the ancestor of our ingroup is the character in
question (in this case, “a” is plesiomorphic and “b” is apomorphic). If equivocal, then
we are not sure; either “a” or “b” could be plesiomorphic.

Maddison et al. (1984) treat the problem of polarity as one in which the investigator
attempts to determine the character to be assigned to the OG node. In effect, it is the
character of the ancestor of the ingroup and its sister group (first outgroup) that will give
us information about the characters of the common ancestor of the ingroup. Simple
parsimony arguments are used in conjunction with an optimization routine developed
by Maddison et al. (1984) that was built on the earlier routines of Farris (1970) and
Fitch (1971). There are two cases. The first case is relatively complete and is built on
known relationships among the outgroups relative to the ingroup. The second case is
where the relationships among the outgroups are either unknown or only partly re-
solved. Because the first case is the simplest, we will use it to describe the general
algorithm.

To illustrate the algorithm, we will use the following character matrix (Table 3.1) for
the hypothetical group M–S. Sidae is the ingroup, and M, N, O, P, Q, and R are
outgroups. The sister group is PQR.

Example 3.1.—Character polarity in the group Sidae.

1. Draw the phylogenetic tree of the ingroup and outgroups. You cannot reconstruct
the entire tree on the basis of the characters in the matrix shown above. These characters
relate to the resolution of relationships in the ingroup, not to the relationships of the
ingroup to the outgroup taxa. Presumably, you have either done an analysis or you have
used the analysis of another investigator. Figure 3.2 shows the result of this previous
analysis with the nodes numbered.

Table 3.1.—Data matrix for the analysis of Sidae (Example 3.1).

Taxon
TS M N O P Q R Sidae

1 b a a b b a a,b
2 b b a b b a a,b
3 a b b b b a a,b
4 a a,b a b b a a,b
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M N O P Q R Sidae

4
5

6
3

2
1

3. Proceeding from the most distant branches (in this case, M and N), do the
following. Label the node “a” if the lower node and adjacent branch are both “a” or “a”
and “a,b”; label it “b” if the lower node and adjacent branch are “b” or “b” and “a,b.” If
these branches/nodes have different labels, one “a” and the other “b,” then label the
node “a,b.” Note that node 1 is not labeled; it is termed the root node. For us to label the
root, we would need another outgroup. Because we are not interested in the root or in
the outgroups, we forget about this node. After all, we are supposed to be solving the
relationships of the ingroup. Node 2, the node immediately above the root, is labeled
“a,b” in Fig. 3.4 because the first branch (M) is “b” and the second branch (N) is “a.”

Fig. 3.3.—The relationships of the Sidae and its relatives, with characters from TS 1 (Table 3.1) and
relevant nodes labeled (Example 3.1).

Fig. 3.2.—The relationships of the Sidae and its closest relatives. Outgroups are letters, nodes are
numbers (Example 3.1).

2. For each transformation series, label each of the branches with the character for
that taxon. Use the character matrix for this task. This has been done for TS 1 in Fig. 3.3.
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5. Continue in the direction of the ingroup to the next nodes. For this we use a
combination of previous decisions (labeled nodes) and new information from terminal
taxa whose ancestral nodes have not been labeled. For example, node 3 in Fig. 3.6 is
assigned a decisive “a” based on the “a” of O and the “a,b” of node 2. Node 5 is assigned
“a,b” based on the “a” of R and the “b” of node 4.

Fig. 3.5.—Second polarity decision for TS 1, analysis of the Sidae (Example 3.1).
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Fig. 3.4.—First polarity decision for TS 1, analysis of the Sidae (Example 3.1).

4. Inspect the tree. Do any of the outgroups have a branching structure? In this
example, the sister group has a branching structure. For each group of this kind, you
need to assign values to their lowest node. So, you work down to the lowest node.
Assign to the highest node in such a group a value derived from its two branches. For
example, the value “b” is assigned to node 4 in Fig. 3.5.
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Fig. 3.6.—Third and fourth polarity decisions for TS 1, analysis of the Sidae (Example 3.1).

6. The analysis is over when we reach an assignment concerning the OG node. In
this example, the assignment to node 6 is a decisive “a” (Fig. 3.7).
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Fig. 3.7.—Assignment of polarity to the OG node for TS 1, analysis of the Sidae (Example 3.1).

Figure 3.8 shows characters of TS 2 of the matrix worked out for each node. Note that
in this case the decision is equivocal for the OG node.
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Fig. 3.8.—Polarity decisions for TS 2, analysis of the Sidae (Example 3.1).
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One last thing. Each of these decisions is made using a single transformation series at
a time. This does not mean that equivocal decisions based on single characters taken
will remain equivocal at the end of the analysis. The final disposition of character states
is subject to overall parsimony rules.

RULES OF THUMB

Maddison et al. (1984) present two rules of analysis that can be used when sister
group relationships are known. These rules will help you bypass some of the argumen-
tation for each node of the tree.

Rule 1: The Doublet Rule.—If the sister group and the first two consecutive outgroups
have the same character, then that character is decisive for the OG node. Any two
consecutive outgroups with the same character are called a doublet.

Rule 2: The Alternating Sister Group Rule.—If characters are alternating down the
tree, and if the last outgroup has the same character as the sister group, then the
character will be decisive for the OG node. If the last outgroup has a different
character, then the character decision will be equivocal.

OTHER SITUATIONS

Maddison et al. (1984) also discuss situations in which the relationships among the
outgroups are either not resolved or only partly resolved. After you have finished this
workbook, you should review their discussion on these topics. We will only mention
two important observations. (1) Whatever the resolution of the outgroup relationships,
the sister group is always dominant in her influence on the decision. If the sister group is
decisive for a particular state, e.g., “a,” no topology of outgroups farther down the tree
can result in a decisive “b.” (2) If you are faced with no sister group but only an
unresolved polytomy below the group you are working on, the frequency of a particular
character among the outgroups in the polytomy has no effect on the decision for the OG
node. For example, you could have 10 possible sister groups with character “a” and one
with character “b,” and the decision would still be equivocal at the OG node. Thus,
common is not the same as plesiomorphic, even among outgroups.

Quick Quiz—Outgroups and Polarities

1. Halfway through your phylogenetic study of the saber-toothed cnidaria, your inquiry
suffers a fate worse than death. The supposed world’s expert, Professor Fenitico,
publishes an arrangement lumping your group with its sister group, placing them both in
the same genus. How does this affect your analysis?

2. What happens if all the members of the ingroup have a character not found in the sister
group or any other outgroup?
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POLARITY  EXERCISES

For each of the trees and tables below, determine the state to be assigned to the OG
node for each of the transformation series. Show the work for each (labeled) node in the
outgroup. Prepare a matrix of your decisions using the labeled nodes as taxa. State your
decision as equivocal or decisive. The monophyly of the ingroup and the relationships
among the ingroup and the outgroups are assumed in each exercise. (No information in
the data matrices is relevant to solving the tree shown in each exercise.)

EXERCISE 3.1.—Determine the character assignment for TS 3 and 4 from Table 3.1
for Example 3.1. In TS 4, treat the polymorphic character in taxon N exactly like you
would treat an equivocal decision at a node.

EXERCISE 3.2.—Use Table 3.2 and the tree in Fig. 3.9.

Table 3.2.—Data matrix for Exercise 3.2.

Transformation series
Taxon 1 2 3 4 5 6

A a a a a a a
B a a a b a b
C b a a a b a
D b b a b b b
E b b b a a b
IG a,b a,b a,b a,b a,b a,b

S
T

U
V

W

A B C D E IG

Fig. 3.9.—Tree for Exercise 3.2.
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EXERCISE 3.3.—Use Table 3.3 and the tree in Fig. 3.10.

N

M

O

P

Q

A B C D E IG

Fig. 3.10.—Tree for Exercise 3.3.

EXERCISE 3.4.—Use Table 3.4 and the tree in Fig. 3.11.

Table 3.3.—Data matrix for Exercise 3.3.

Transformation series
Taxon 1 2 3 4 5 6

A a b a a a a
B a a b a a a
C b b a b a b
D b b b a b a
E b b a a b b
IG a,b a,b a,b a,b a,b a,b

Table 3.4.—Data matrix for Exercise 3.4.

Transformation series
Taxon 1 2 3 4 5 6

A a a a a a a
B a b b b b b
C a b a b b b
D b b a b b b
E b b b a a b
F a b a b a a
G a a a a a a
IG a,b a,b a,b a,b a,b a,b
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Fig. 3.11.—Tree for Exercise 3.4.

EXERCISE 3.5.—Use Table 3.5 and the tree in Fig. 3.12.

CHARACTER  CODING

As you learned in Chapter 1, a character is a feature of an organism. A character code
is a numerical or alphabetical symbol that represents a particular character. We have
already used codes in our previous exercises. By using these characters and their codes,
you have learned something about the basics of tree reconstruction using classical
Hennig argumentation and some of the approaches to determining the polarity of
characters through character argumentation. You already know something about differ-
ent kinds of characters, homologies, analogies, and homoplasies. In this section, you

Table 3.5.—Data matrix for Exercise 3.5.

Transformation series
Taxon 1 2 3 4 5 6

A a a a a a a
B a b a b a a
C b a a a b b
D b a a b b b
E a a a b b b
F a a b b b b
G b b b b b b
H b b b a b b
I b b a b b b
J a b a a a b
K a b a b a a
IG a,b a,b a,b a,b a,b a,b
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will be introduced to some of the different kinds of derived characters encountered in
phylogenetic research and some of the problems associated with assigning codes to
these characters. Before you begin, it might be useful to reread the sections in Chapter 1
about the attributes of specimens. (You should be aware that some investigators refer to
transformation series as “characters” and characters as “character states.” It is usually
quite clear what is being discussed, but this is a potential source of confusion.)

All of the derived characters we have dealt with up to this point are 1) qualitative
characters and 2) part of binary transformation series. A binary transformation series
consists of a plesiomorphy and its single derived homologue. By convention, the
plesiomorphy is coded “0” and the derived homologue is coded “1.” As we mentioned
in Chapter 1, such binary transformation series are already ordered by virtue of the fact
that they are binary. When an investigator works on a large group, or even a small group
that has undergone considerable evolution, she may find that there are several different
homologous characters in a transformation series. For example, if she were researching
the phylogenetic relationships of fossil and Recent horses, the transformation series
containing the characters for the number of toes of the hind foot would contain four
different but related characters: four toes, three toes, and one toe in the ingroup and five
toes in the outgroups. This kind of transformation series is termed a multistate
transformation series. A multistate transformation series contains a plesiomorphic
character and two or more apomorphic characters.

Simple binary transformation series present no problem in coding. The investigator
codes by outgroup argumentation, according to the information available, producing a
matrix full of 0 and 1 values. You have practiced this kind of coding in Chapter 2.
Complications arise if there are one or more polymorphic taxa, i.e., taxa with both the
plesiomorphic and apomorphic characters. The problem is only critical when both types
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Fig. 3.12.—Tree for Exercise 3.5.
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of characters are found in a single species. In such cases, the taxon can be treated as
having both characters, a designation easily handled by available computer programs.

Multistate transformation series can be grouped in two ways: 1) according to what
we know of their evolution and 2) according to the way they are related. Ordered
transformation series are those in which the relationship of characters within the
transformation series are specified (and presumably “known”). Binary transformation
series are the simplest case of ordered transformation series. A polarized ordered
transformation series is one in which not only the relationships are specified, but also
the direction of evolution. Unordered transformation series are those where the
relationships of characters to one another are not specified. This does not mean that we
know nothing about the transformation series. Frequently, we know which of the
characters is plesiomorphic; we just don’t know the order of the derived transformation
series. Such a transformation series is partly polarized. If you are using a computer
program such as PAUP or MacClade, the program can tell which of the unordered
characters is the plesiomorphic one when you root the tree at a specific point or with a
specific taxon. The program relies on you, however, to specify this information cor-
rectly.

The second way of grouping multistate transformation series is by their relationships.
Polarized transformation series may come in several varieties. In the simplest case, the
characters might be related in a linear fashion. A linear transformation series consists
of characters related to one another in a straight-line fashion such that there are no
branches on the character tree (Fig. 3.13). The relationships of these characters can be
termed a character tree. It is important to understand that a character phylogeny is not
the same as a phylogeny of taxa. A character tree contains only information about the
relationships among characters; the distribution of these characters among taxa is
shown in descriptions, diagnoses, and character matrices.

OG, A B, C, D E, F G, H

Fig. 3.13.—A simple linear character tree of four characters. Letters represent taxa in which each
character is found.

Linear transformation series present no problems in coding; one simply assigns a
value to each character in ascending order. Each value is placed in the data matrix in a
single column, and each apomorphy contributes to the length of the tree in an additive
fashion. We use the term additive because each instance of evolution is one step along
the tree, and counting all of the steps in a straight line shows exactly how much the
transformation series has added to the overall tree length. (Such transformation series
are often termed additive multistate characters.)
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A branching transformation series contains characters that are not related to each
other in a straight-line fashion (Fig. 3.14). Such transformation series may present
problems because the relationships among the characters are represented by a branch-
ing pattern rather than a straight-line pattern. Because of this, the characters cannot be
coded in an additive fashion. Such transformation series are also called nonadditive or
complex transformation series. Because the characters are not related in a linear
fashion, simple additive coding will result in errors in translating the transformation
series into a phylogenetic tree.

OG, A

B, D

C

E, G

F H

Fig. 3.14.—A complex branching character tree of six characters. Letters represent taxa in which
each character is found.

We present two examples of character coding using three techniques. You will
probably ask where we came up with the character trees of the two transformation
series. This is a good question and one we will return to in a later section. For now, we
are only concerned with the formalities of coding and not how one actually determines
the character trees.

Example 3.2.—A simple linear transformation series.

In Fig. 3.13, we show a simple linear transformation series of four characters. Below
the character tree is an account of the distribution of these characters among nine taxa.
The data matrix for this transformation series can be constructed in one of two basic
ways. First, we can simply code the transformation series in a linear fashion, assigning
a value to each character based on its place in the character phylogeny. We have chosen
to code with values ranging from 0 to 3 (Table 3.6).
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We could also use additive binary coding, which is a method that breaks the
character down into a number of subcharacters, each represented by its own column of
information. For example, because the characters in the transformation series really
consist of subsets of related characters, we can consider both “circle/circle” and “circle/
dot” as subsets of “circle” because each is derived from “circle” later in the character
tree. The first additive binary column in Table 3.6 reflects this fact, coding “oval” as the
plesiomorphic character (0) and “circle” plus all of its descendants as apomorphic (1).
“Circle/dot” is a subset of “circle/circle.” Both “oval” and “circle” are plesiomorphic
relative to “circle/circle” so they get a coding of “0,” whereas “circle/circle” and its
descendant “circle/dot” get a coding of “1.” Finally, “circle/dot” is apomorphic relative
to “circle/circle” (and “oval” and “circle”) so it is coded “1” in the third column. So in
total, we have produced three columns to represent the transformation series. Now, go
along the rows and add up all of the 1’s in the additive binary matrix and put them into
a single column. You should find that you have replicated the original linear transforma-
tion series of 0-1-2-3. Either method of coding produces exactly the same phylogeny.
But, there are some differences. If you use binary coding, you must keep in mind that
formal computer algorithms and the programs that use them cannot tell the difference
between three noncorrelated and independent transformation series and a single binary
coded transformation series. This doesn’t cause problems with phylogenetic analysis,
but it can produce results that seem strange in biogeographic analysis and the analysis
of coevolutionary patterns, which we will discuss in Chapter 7.

Example 3.3.—A branching transformation series.

Let us look at the branching transformation series in Fig. 3.14. The taxa sharing a
particular character are shown beside or above the character on the character tree. This
transformation series is considerably more complex than the first one. It should be
obvious that a single labeling of characters in a linear fashion would result in some
misinformation. How do we show these complex relationships? There are two basic

Table 3.6.—Data matrix for a simple linear transformation series coded by the linear and the additive
binary methods (Example 3.2).

Additive binary coding*
Taxon Linear coding C + C/C + C/D C/C + C/D C/D

OG 0 0 0 0
A 0 0 0 0
B 1 1 0 0
C 1 1 0 0
D 1 1 0 0
E 2 1 1 0
F 2 1 1 0
G 3 1 1 1
H 3 1 1 1

* Column heads are apomorphic (1) characters. C = circle; C/C = circle/circle; C/D = circle/dot.
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methods, nonadditive binary coding and mixed coding. Because we have already seen
an example of binary coding, let us turn to this method first.

Review the character tree and then examine the nonadditive binary codings in Table
3.7. Note that “square” is apomorphic relative to “triangle,” by outgroup comparison,
and that “square” is ancestral to all other characters in the character tree. Our first binary
column reflects this fact: “square” and all of its descendants are coded “1,” whereas
“triangle” is coded “0.” “Square/square” is derived from “square.” “Rectangle” is also
directly derived from “square.” Look at “square/square.” It is only found in taxon C. We
produce a new column reflecting this fact. In this column “square/square” acts like an
autapomorphy (which it is). “Rectangle” does not act as an autapomorphy; it is
plesiomorphic to two other characters. This fact is used to code “rectangle” in a similar
manner to the way we coded “square,” as shown in the third column. Since both
“rectangle/triangle” and “rectangle/dot” are unique to their respective taxa, F and H, we
code them in a manner similar to “square/square.” Now, you are able to reconstruct the
phylogeny of the group AH using the two character phylogenies.

Mixed coding is a hybrid between additive binary coding and linear coding. Mixed
coding has also been termed nonredundant linear coding. By convention, the longest
straight-line branch of the character tree is coded in a linear fashion. Branches off this
linear tree are coded in an additive binary fashion. This strategy might save character
columns, depending on the asymmetry of the character tree. We can code the section of
the character tree that goes “triangle,” “square,” “rectangle,” “rectangle/dot” in a single
column (0-1-2-3) in the first column of Mixed coding in Table 3.7. (How do you know
to use “rectangle/dot” as the fourth character in the transformation series? Actually, the
choice is completely arbitrary; remember, nodes can be freely rotated. We could have
just as well used “rectangle/triangle” and coded “rectangle/dot” as the autapomorphy.)
A separate column is then used for “square/square” (column 2), and a final column for
“rectangle/triangle.”

Table 3.7.—Data matrix for a branching transformation series coded by the nonadditive binary and
the mixed methods (Example 3.3).

Nonadditive binary coding* Mixed coding*
Taxon All except T S/S R+ R/D R/T T +S+R+R/D S/S R/T

OG 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0
B 1 0 0 0 0 1 0 0
C 1 1 0 0 0 1 1 0
D 1 0 0 0 0 1 0 0
E 1 0 1 0 0 2 0 0
F 1 0 1 1 0 2 0 1
G 1 0 1 0 0 2 0 0
H 1 0 1 0 1 3 0 0

* Column heads are apomorphic (≥1) characters. T = triangle; S = square; S/S = square/square; R+ = rectangle
and all descendants; R/D = rectangle/dot; R/T = rectangle/triangle.
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Basal bifurcations occur when both the outgroup and one of the ingroup taxa have
the same character. In this case, assign “1” rather than “0” to the most plesiomorphic
character and proceed. This coding strategy serves to “link” the columns and will not
add steps to the tree.

Note on character coding. Newer computer algorithms such as PAUP 3.0 can use a
character tree directly if the investigator inputs the relationships of the characters. It
then uses this information to construct an additive binary matrix for analysis, which the
investigator never sees (Swofford, 1990).

Quick Quiz—Character Coding

1. Your research into the systematics of the spade-lipped mugmorts is halted until you
resolve the coding of a troublesome transformation series. You have identified the
plesiomorphic character, but the remaining six cannot be polarized. What type of
transformation series should be considered?

2. The copulatory organ of spade-lipped mugmorts has various colors, including no color at
all. The evolutionary sequence of color change is not known except that the sister group
and all other outgroups have colorless organs. Although you could opt for a polarized but
unordered transformation series, you opt instead for a binary transformation series for
each color (e.g., no color [0] to blue [1], no color [0] to green [1], etc.). What effect will
your decision have on reconstructing the tree?

CODING EXERCISES

For each of the trees shown below do the following:

1. Determine the possible types of coding strategies that might be used and list them.
2. Explain why certain coding strategies cannot be employed for the particular charac-

ter tree.
3. Prepare a data matrix for each type of coding strategy you think could be

employed.
4. Solve the phylogenetic problem with the data in the matrix.

EXERCISE 3.6.—Use Fig. 3.15.
l

OG

m

A

n

B

o

C

Fig. 3.15.—A character tree for four characters. Capital letters represent taxa in which each character
(lowercase letters) is found. We use letters rather than numbers to emphasize the difference between a
character and a character coding.
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EXERCISE 3.7.—Use the character tree in Fig. 3.16.

l

m

n

op

q

r s

OG

A

B,C

D, E F T, U

S

V, W

Fig. 3.16.—A character tree for eight characters. Capital letters represent taxa in which each
character (lowercase letters) is found.

EXERCISE 3.8.—Use the character tree in Fig. 3.17.

m

n

q

sr

o

p

u t

OG

A

B

C, D

M

N
O

P Q, R

Fig. 3.17.—A character tree for nine characters. Capital letters represent taxa in which each character
(lowercase letters) is found.
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CHAPTER NOTES AND REFERENCES

1. Discussions of homology, different kinds of characters, and basic character argu-
mentation can be found in Wiley (1981a). However, this reference is outdated when it
comes to outgroup comparison and contains no information of use on character coding
and other “modern” issues.

2. There is a lot of information on outgroups and outgroup comparisons. Maddison
et al. (1984) was preceded by Watrous and Wheeler (1981) and a criticism of them by
Farris (1982). Wiley (1987b) contains a summary of the three papers. The discussion by
Crisci and Stuessy (1980) is, in our opinion, positively misleading and should be
avoided. Donoghue and Cantino (1980) discuss one method of outgroup comparison,
the outgroup substitution method, that can be useful when relationships among
outgroups are problematic.

3. Those who have read some phylogenetic literature will note that we have avoided,
until now, any mention of other criteria. Wiley (1981a) discusses several other criteria.
Other useful discussions can be found in de Jong (1980) and Stevens (1980). The major
bone of contention is what is known as the ontogenetic criterion. Some, such as Nelson
(1978, 1985), Patterson (1982), Rieppel (1985), and Weston (1988), advocate the
ontogenetic criterion as a (or the) major criterion for determining polarity. We do not
think this is a general criterion (see Brooks and Wiley, 1985; Kluge, 1985, 1988a;
O’Grady, 1985; Kluge and Strauss, 1986), but we recognize that it can be used to both
check hypotheses of homology (cf. Hennig, 1966; Wiley, 1981a; Patterson, 1982;
Kluge, 1988a) and infer polarity under certain assumptions. Before you employ this
criterion, you should read Mabee (1989).

4. Some papers of interest on character coding include Farris et al. (1970), Mickevich
(1982), O’Grady and Deets (1987), Pimentel and Riggins (1987), and O’Grady et al.
(1989).

Complications arise if one or more of the taxa have both the plesiomorphic and
apomorphic character. Polymorphic taxa have both the plesiomorphic and apomorphic
characters. Actually, the problem is only critical when both are found in a single
species. Considerable controversy surrounds the coding of such characters, especially
when biochemical characters are used. There are two ways of handling such characters:
1) coding the taxon as having the apomorphy only and discounting the plesiomorphy or
coding both characters as present and using a computer program such as PAUP that can
handle polymorphic data cells (qualitative coding) or, 2) coding according to frequency
of each character. Swofford and Berlocher (1987) present a strong case for analysis of
frequency data and suggest computational methods for accomplishing this within a
phylogenetic analysis. D. L. Swofford (pers. comm.) has authored a computer program
(FREQPARS) to accomplish this task. Buth (1984) is an excellent introduction to the
use of electrophoretic characters.



CHARACTER ARGUMENTATION AND CODING 43

QUICK  QUIZ  ANSWERS

Outgroups and Polarities

1. This question has no simple answer. We suggest the following. Examine the paper. Has Professor
Fenitico provided synapomorphies to support his argument? If not, then he has only produced another
arrangement and not a scientific hypothesis you can evaluate, so you should proceed with your problem
as if nothing had been published. If he does provide synapomorphies, what is the nature of these
characters? Do they demonstrate that the sister group is monophyletic? Is the sister group still the sister
group, even if it is now in the same genus? If so, then the nature of our character argumentation has not
changed, only the taxonomy, which might be very important to Professor Fenitico but should not be
important to you. However, if Professor Fenitico has demonstrated that the supposed sister group is
really embedded within your group, then take this into consideration, redesign your arguments, and
write Professor Fenitico to tell him that names really don’t mean anything, especially his.

2. If this character is really unique to the ingroup, then it is a synapomorphy of the members of the
group (or, if you wish, an autapomorphy of the group).

Character Coding

1. You can opt for an unordered transformation series or you can try coding six binary ordered series.
If you pick the binary series, check answer 2.

2. Because “no color” is symplesiomorphic, repeated use of this character in different transformation
series will result in an answer that has no bearing on the relationships among the taxa. The effect is to
render all of the color characters autapomorphic, which implies that all are independently derived from
“no color.” Better see answer 1 and opt for an unordered transformation series.
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CHAPTER 4

TREE BUILDING AND OPTIMIZATION

Phylogeneticists frequently describe their work in terms of “building trees” or
“reconstructing phylogenies.” These activities are directed towards attempts to dis-
cover something we believe exists in nature, the common ancestry relationships among
the organisms we study. Interestingly, modern computer programs do not spend much
computing time building trees. Rather, most of the time is spent evaluating different tree
topologies (branching patterns) in an effort to find the tree that meets a criterion of
optimality given the data. How the tree is actually generated may be irrelevant. For
example, you can evaluate all of the possible trees for a three taxon problem by simply
mapping the character distributions on the four possible trees in the most efficient
manner (i.e., maximizing the number of synapomorphies and minimizing the number of
homoplasies needed given the tree). You don’t have to build a tree, all the possible trees
are given. Under the criterion that the shortest tree is the optimal tree, all you have to do
is count the changes and pick the shortest tree among the four possibilities.

Of course, as the number of taxa increases, the number of possible trees increases
very quickly (see Chapter 6). Because phylogenetic methods were originally built
around constructing trees, many of the classic works emphasize reconstruction, and
they do so using methods such as Hennig argumentation (Hennig, 1966) and the
Wagner algorithm (Kluge and Farris, 1969). Although many “modern” phylogeneticists
will never use classic Hennig argumentation and algorithms such as the Wagner
algorithm provide only the starting point for some (not even all) modern computer
programs, it is important for you to get the feel of these approaches because they give
insight into the nature of phylogenetic data and help you understand how previous
investigators arrived at their conclusions. Thus, we have organized this chapter in a
quasi-historical fashion. We begin with Hennig argumentation, Hennig’s own method
for reconstructing phylogenies. We then use the Wagner algorithm to teach the rudi-
ments of a formal algorithm and how such an algorithm might be implemented and
provide some basic terms encountered in more modern methods. We then discuss the
concepts of the optimal tree, optimal character distribution, various parsimony criteria,
and ACCTRAN and DELTRAN optimization. Finally, we provide a very brief discus-
sion of how current algorithms operate to produce optimal or near optimal trees.

HENNIG ARGUMENTATION

You already have had practice at performing analyses using Hennig argumentation in
Chapter 2. However, you did it in a rather laborious way, using the inclusion/exclusion
principle. Hennig argumentation was the original phylogenetic algorithm, and its
application is still common. For simple problems, Hennig argumentation presents no
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technical problems. However, even with relatively few taxa and characters, you will
find it much too tedious to make all of those single-character trees and all of the
logically incompatible alternative trees. In computer implementations of phylogenetics,
the computer performs this boring task. An investigator working without a computer
has two problems. First, she would never want to make all the inclusion/exclusion trees.
Second, with even a small amount of homoplasy the investigator runs the chance of
missing equally parsimonious solutions to the tree that she finds, not because the
algorithm is defective but because the human mind rejects the ennui of considering all
possible alternative trees. A really experienced phylogeneticist instead will “inspect”
the data matrix and produce a first tree based on this general inspection, filtering
through the data in her mind. We would like you to try this on the exercises below. One
strategy, for example, would be to circle potential groupings within the data matrix.
Another strategy is to start with “obvious groups” (=lots of synapomorphies) and then
attempt to link them together. Although this might seem rather imprecise to you,
remember that it is similar to the method Hennig himself probably used. Remember, no
tree you draw has to be the final tree. All trees are hypotheses.

Hennig Exercises

EXERCISE 4.1.—Bremer’s (1978) Leysera data.

Leysera is a small genus of composite shrublets found in southern Africa (three
species) and the Mediterranean region (one species). The closest relatives of Leysera
appear to be the genera Athrixia, Rosenia, and Relhandia. The phylogenetic relation-
ships of these genera are as follows. Leysera, Rosenia, and Relhandia form a tri-
chotomy. Athrixia is the sister of these three genera. Leysera is monophyletic based on
two characters: 1) the chromosome number is 2N = 8 and 2) all have a solitary capitula
on a long peduncle. The distribution of characters among the four species of Leysera is
given in Table 4.1.

Based on outgroup information, the following characters are plesiomorphic: 1)
receptacles smooth, 2) hairs absent on the floret tubules, 3) barbellate pappus, 4) achene
surface smooth, 5) pappus scales subulate, and 6) perennial life cycle.

Table 4.1.—Leysera ingroup characters.

Floret Pappus Achene Pappus Life
Taxon Receptacle tubules type surface scales cycle

L. longipes smooth with glands barbellate smooth subulate perennial
L. leyseroides rough with hairs plumose rough wide, flat annual
L. tennella rough with hairs plumose rough wide, flat annual
L. gnaphalodes rough with hairs plumose rough subulate perennial
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1. Prepare a data matrix.
2. Analyze the phylogenetic relationships of Leysera based on the information given

and draw the tree of relationships.

EXERCISE 4.2.—Siegel-Causey’s (1988) cliff shags.

Shags, cormorants, and anhingas comprise a clade of marine and littoral fish-eating
birds. Among shags, the genus Stictocarbo (cliff shags) comprises eight species. In this
exercise, you will use both outgroup information and ingroup information to recon-
struct the relationships among six species of Stictocarbo. The seventh species (S.
magellanicus) is used as the sister group, and species in other genera provide additional
outgroups.

1. Using the tree in Fig. 4.1 and the characters in Table 4.2, determine the character
at the outgroup node for each transformation series and arrange this as a character vector
labled “OG.”

2. Adding the characters in Table 4.3, reconstruct the phylogenetic relationships
among the remaining six species of the genus. Tip:  Some of the decisions you reached
in step 1 are equivocal. Don’t use these transformation series to reconstruct the initial
tree.

3. After reconstructing the relationships among the species, examine the transforma-
tion series with equivocal decisions at the outgroup node. Can you now characterize
them? Will one or more remain equivocal, giving rise to alternative interpretations of
character evolution?

THE WAGNER ALGORITHM

The basics of the Wagner algorithm were published by Kluge and Farris (1969).
Although phylogenetic, the algorithm was developed independent of the Hennig argu-
mentation algorithm and was based on Wagner Groundplan Divergence Analysis.
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Fig. 4.1.—A hypothesis of the phylogenetic relationships among certain shags.
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Wagner Definitions

Like all techniques, the Wagner algorithm comes with certain terms that must be
learned to appreciate its logic. In some cases, these terms are illustrated by examples
(refer to Table 4.4).

Table 4.4.—Sample data matrix for Wagner definitions and Exercise 4.3.

Taxon Characters

M 1 0 0 0 0
A 0 1 0 1 1
B 0 1 1 0 0

1. A particular character (X) of a particular taxon (A) is defined as X(A,i), where i
is the ith character in a vector of i characters.

2. The vector of characters for a particular taxon is defined as ∑ X(A,i). For
example, the character vector for M is

∑ X(M, i) = 1 0 0 0 0.

3. The difference (D) between two taxa is the sum of the absolute differences
between their characters:

D(A,M) = ∑ |X(A,i) – X(M,i)|.

We calculate this in the following manner:

D(A,M) = ∑ |X(A,i) – X(M,i)|
= |0 – 1| + |1 – 0| + |0 – 0| + |1 – 0| + |1 – 0|
= 4.

EXERCISE 4.3.—Calculate the difference (D) between A and B and between M and B
(Table 4.4).

4. The interval  (INT) of a taxon is the length of the line between that taxon and its
ancestor. For example, the interval of B is

INT(B) = D[B,ANC(B)],

where INT(B) is the interval of taxon B, ANC(B) is the hypothetical ancestor of B, and
D[B,ANC(B)] is the path length distance of B to its ancestor.

Example 4.1.—Calculating interval B.

Let us take our simple data matrix and calculate an interval. Designate M as the
ancestor (it’s really the outgroup, but it doesn’t matter here). So, ANC(B) is M and the
formula reads
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INT(B) = D[B,M]
= ∑ |X(B,i) – X(M,i)|
= |0 – 1| + |1 – 0| + |1 – 0| + |0 – 0| + |0 – 0|
= 3.

The interval is shown graphically in Fig. 4.2.

B

M
INT(B) = 3

Fig. 4.2.—Graphic representation of INT(B) of the Wagner algorithm.

Table 4.5.—Data matrix for Wagner algorithm distances and intervals (Exercise 4.4).

Taxon Characters

ANC 0 0 0 0 0 0
A 1 1 0 0 0 0
B 1 0 1 0 1 0
C 1 0 1 1 0 1

For this exercise we will make the following assumptions. First, all of the characters
scored “1” have been previously argued as derived, using the standard outgroup
procedures. Second, we have used outgroup comparison to construct a valid hypotheti-
cal ancestor. (Note that the ancestral vector is composed entirely of “0” values.) From
the data in Table 4.5, 1) calculate the distance of each taxon to each other taxon and
from each taxon to the ancestor and 2) pick the least distance and calculate the interval
from that taxon to the ancestor.

The Algorithm

Given any matrix of characters, we implement the Wagner algorithm in the following
manner (from Kluge and Farris, 1969).

1. Specify an ancestor or outgroup.
2. Within the ingroup, find the taxon that shows the least amount of difference from

the ancestor/outgroup. To accomplish this, calculate D for each taxon to the ancestor/
outgroup.

3. Create an interval for the taxon that has the smallest D.

EXERCISE 4.4.—Distances and intervals (Table 4.5).
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D(B,A) + D[B,ANC(A)] – D[A,ANC(A)]
D[B,INT(A)] =

4. Find the next taxon that has the next smallest difference from the ancestor/sister
group. Do this by inspecting the original D values you calculated. If there is a tie (i.e.,
two or more with the same value of D), then arbitrarily pick one.

5. Find the interval that has the smallest difference with the taxon selected in step 4.
To compute D(taxon,interval), use the following formula:

6. Attach the taxon to the interval you have selected by constructing a hypothetical
ancestor for the two taxa. The character vector of the ancestor, and thus its position
along the interval, is computed by taking the median value of the existing taxon, its
ancestor, and the added taxon.

7. Go to step 4 and repeat for each remaining taxon.

Example 4.2.—First Wagner calculations.

We begin with an extremely simple example taken from Wiley (1981a). There are
three taxa and their ancestor. Step 1 is specified in Table 4.6 as the ANC vector.

Table 4.6.—Data matrix for Wagner calculations (Example 4.2).

Taxon Characters

ANC 0 0 0 0 0 0
A 1 1 0 0 0 0
B 1 0 1 0 1 0
C 1 0 1 1 0 1

2. Calculate D from the ancestor for each taxon. You already did this in Exercise 4.5.

D(A,ANC) = 2
D(B,ANC) = 3
D(C,ANC) = 4

3. Construct an interval for this taxon. A has the smallest distance to ANC, so we
construct INT(A,ANC):

INT(A,ANC) = D(A,ANC) = 2.

4. Select the next taxon that has the smallest D to the ANC. This would be taxon B.
5. Find the interval that has the smallest D to taxon B. Because there is only one

interval, INT(A,ANC), we have no choice but to add B to this interval. Therefore, we
don’t have to compute D[B,INT(A)]. We connect B to INT(A) by constructing a
hypothetical ancestor (X) whose characters are the median of the transformation series
of ANC, A, and B, the three taxa involved in the problem at this point (Table 4.7). Our

2
.
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Table 4.7.—Data matrix for Wagner calculations with a hypothetical ancestor (X) (Example 4.2).

Taxon Characters

ANC 0 0 0 0 0 0
A 1 1 0 0 0 0
B 1 0 1 0 1 0
X (median) 1 0 0 0 0 0

A (1 1 0 0 0 0) B (1 0 1 0 1 0)

X (1 0 0 0 0 0)

ANC (0 0 0 0 0 0)

INT(X)

INT(A) INT(B)

Fig. 4.3.—A branched Wagner tree with a new hypothetical ancestor (X) and three intervals (Example
4.2).

6. We return to step 4 of the algorithm, adding the next taxon that shows the least
difference from ANC. By default, this is taxon C, but where do we add C? The
algorithm states that it should be added to that interval that has the smallest difference
from C. Therefore, we must calculate three interval difference values, one for each
interval in the tree. The formula for figuring the difference between a taxon and an
interval requires finding the difference between the taxon added and the ancestor of the
taxon already in the tree. In this case, there are two ancestors. You already know the
difference between C and ANC (D = 4, see above). But, you haven’t calculated the
difference between A, B, or C and the new ancestor, X, and you haven’t calculated the
differences between C and A or C and B. This is the first step.

D(A,X) = |X(A, i) – X(X,i)| = 1
D(B,X) = |X(B,i) – X(X,i)| = 2
D(C,X) = |X(C,i) – X(X,i)| = 3
D(C,A) = |X(C,i) – X(A,i)| = 4
D(C,B) = |X(C,i) – X(B,i)| = 3

D(X,ANC) = |X(C,i) – X(ANC,i)| = 1

tree now has a branch, a new hypothetical ancestor, and, most importantly, three
intervals, INT(A), INT(B), and INT(X) (Fig. 4.3).



TREE BUILDING AND OPTIMIZATION 53

Now we can begin our calculations.

D[C,INT(A)] =
D(C,A) + D(C,X) – D(A,X)

2

(4 + 3 – 1)

2

= 3

=

D[C,INT(B)] =
D(C,B) + D(C,X) – D(B,X)

2

(3 + 3 – 2)

2
= 2

=

D[C,INT(X)] =
D(C,X) + D(C,ANC) – D(X,ANC)

2
(3 + 4 – 1)

2
= 3

=

Because the difference between C and INT(B) has the smallest value, we construct
another hypothetical ancestor (Y) and connect C to the tree through this new ancestor to
INT(B) (Fig. 4.4). To calculate the character vector for this new ancestor, take the
median of the vectors of the three appropriate taxa, X, B, and C (Table 4.8). You have
now completed the problem (Fig. 4.4).

Fig. 4.4.—Complete Wagner tree with two hypothetical ancestors (X and Y) (Example 4.2).

A 

INT(C)

C (1 0 1 1 0 1) B (1 0 1 0 0 0)

Y (1 0 1 0 0 0)

X
INT(Y)

ANC
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Wagner Tree Exercises

The two exercises use the same data matrices as those used in the Hennig argumenta-
tion exercises. To follow the exercise answers more closely, we suggest that you label
the ancestors sequentially beginning with “A” and follow the tips in each exercise.

EXERCISE 4.5.—Bremer’s (1978) Leysera data.

Reconstruct the relationships among Bremer’s species (Table 4.1) using the Wagner
algorithm. Use a zero vector ancestor. Tip:  There is a tie; add L. leyseroides before L.
tennella if you want to conform directly with the answers.

EXERCISE 4.6.—Siegel-Causey’s (1988) cliff shags.

Reconstruct the relationships of Siegel-Causey’s cliff shags using Table 4.3 and the
character vector you reconstructed at the OG node. Some of the character decisions at
the OG node were equivocal; for this exercise use the following decisions for these
transformation series: 2-0, 36-1, 102-0, 124-1. This is a large and complicated exercise,
but it will be worth the effort to complete. Tips: 1) To decrease the work load, compare
ancestral intervals before you compare terminal intervals. If the distance to the interval
of, say, ancestor B is greater than that to ancestor C, then you will not have to compute
the distances to those terminal intervals connecting to ancestor B. This shortcut works
because we are using path length distances. 2) You will find two ties: add S. aristotelis
before S. urile and add S. gaimardi before S. featherstoni if you want to directly follow
the answers. Of course, this addition sequence is arbitrary.

OPTIMAL  TREES AND PARSIMONY  CRITERIA

An optimal tree is one of many possible trees that meets a particular criterion.
Although several criteria exist (i.e., maximum likelihood, parsimony, least square
methods for distance data; see Swofford and Olsen [1990] for a readable review), we
are concerned only with parsimony as reflected by measurements such as tree length.
By this criterion, usually referred to as the maximum parsimony criterion, the optimal
tree is the tree that has the shortest length for a particular data set given our assumptions

Table 4.8.—Complete data matrix for Wagner calculations with a second hypothetical ancestor (Y)
(Example 4.2).

Taxon Characters

X 1 0 0 0 0 0
B 1 0 1 0 1 0
C 1 0 1 1 0 1
Y (median) 1 0 1 0 0 0
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about character evolution. There may be only a single optimal tree, but there may also
be several to many optimal trees. We usually refer to these as the set of equally
parsimonious trees.

We can consider the distribution of a particular transformation series as “optimal” for
a particular tree topology under the maximum parsimony criterion if that distribution
provides a narrative explanation of character evolution that minimizes the number of
homoplasies and maximizes the number of apomorphies. Homoplasy is not precluded,
only minimized for a particular tree topology. Carefully note that we have referred to
character optimization given a particular tree topology. Optimization is an a posteriori
activity; it does not help build trees but is used for evaluating trees that are already built.

The assumptions about character evolution are reflected by several factors, including
how we coded the characters (Chapter 3) and how we weight the transformations that
have occurred. The weight of a transformation from one character to another represents
an assumption on the part of the investigator about the nature of character evolution,
which is reflected in the kind of parsimony she picks (actually it’s more complicated
than this, but this characterization will do for a start). Up to now, we have assumed that
all characters have equal weight, which amounts to assigning an equal “cost” of
evolution for one step for each transformation within a transformation series. However,
you can imagine that the weight of a transformation can be larger or smaller than one.

Swofford and Olsen (1990) review four criteria that provide an introduction to
different views on the nature of parsimony.

1. Wagner parsimony (Kluge and Farris, 1969; Farris, 1970) treats characters as
ordered such that the change from one character to another implies change through any
intervening characters in the transformation series. Characters are allowed to reverse
freely.

2. Fitch parsimony (Fitch, 1971) treats characters in a transformation series as
unordered such that change from one character to another character within a
transformation series does not imply changes through possible intervening characters.
Characters are allowed to reverse freely.

These two criteria are conceptually simple and do not assume much about the
evolutionary process. Their differences can be appreciated by considering the transfor-
mation series “0, 1, 2.” If a particular tree topology “forces” the hypothesis that “0”
evolves to “2,” Wagner parsimony would add two steps to the tree, whereas Fitch
parsimony would add only one step. Which result is biologically reasonable would
depend on the justification for ordering or not ordering the transformation series. An
important similarity of the two criteria is that both assign a cost to character reversals.
Thus, there is no cost in terms of tree length if the root of the tree is changed. This is
quite different from the characteristics of the next two parsimony criteria, where
rerooting can have a considerable effect on tree length.

3. Dollo parsimony (Farris, 1977) requires every synapomorphy to be uniquely
derived, i.e., appearing only once on the tree. The synapomorphy may reverse, but once
reversed it cannot reappear. Thus, parallel gains of apomorphies are prohibited. Dollo
parsimony has been advocated for certain kinds of transformation series (e.g.,
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endonuclease restriction site data; DeBry and Slade, 1985), but a “relaxed” Dollo
criterion, which amounts to assigning a weight to the cost of reversal, might be more
appropriate for these data (Swofford and Olsen, 1990). For example, you might assign a
weight of “6” to gains of restriction sites, making their parallel evolution very costly in
terms of tree length but not impossible. (The weight 6 is not arbitrary but refers to
restriction sites six bases in length. The rationale is that the gain of a six-base site is six
times less likely than its loss because a single nucleotide change would cause the loss.)

4. Camin–Sokal parsimony makes the assumption that character evolution is
irreversible. This is true, philosophically, because time is irreversible and the reversals
are really new apormorphies. But we cannot know this a priori. This criterion is rarely
used.

Swofford and Olsen (1990) characterize general parsimony as an attempt to balance
our knowledge of character evolution. You may have knowledge about different sorts of
transformation series. This knowledge can be reflected in how you treat the characters.
For example, you might have a data matrix composed of both morphological and
biochemical characters. You may elect to treat a morphological transformation series of
several characters as ordered because you have ontogenetic data that suggest a particu-
lar ordering. At the same time, you may have a number of alleles at a particular locus
that you treat unordered because there is no clear evolutionary path connecting them
that you can determine based on an independent criterion. This transformation series
would be treated as unordered. You might have another transformation series comprised
of the presence and absence of a particular restriction site and assign a weight to the
presence. The result of such an analysis will be a tree supported by characters of various
qualities. Tree topologies supported by characters given high weight are harder to reject
than tree topologies whose branches are supported by characters weighted equally
because of the cost of independently gaining high-weight characters. Thus, differential
weighting should be carefully considered before application.

OPTIMIZING  TREES

You have already done some optimization in Chapter 2 when you produced trees that
had alternate interpretations about the distribution of homoplasies (i.e., Fig. 2.11). Now,
we will cover optimization in a more formal manner by considering two basic types,
ACCTRAN and DELTRAN (Swofford and Maddison, 1987). ACCTRAN is equivalent
to Farris optimization (Farris, 1970) where there is a known ancestor. The etymology of
the name is derived from the fact that the procedure ACCelerates the evolutionary
TRANsformation of a character, pushing it down the tree as far as possible. The effect is
to favor reversals over parallelisms when the choice is equally parsimonious. The tree
in Fig. 2.11c is an “ACCTRAN tree.” In contrast, DELTRAN DELays the
TRANsformation of a character on a tree. The effect is to push the character up the tree
as far as possible and to favor parallelisms over reversals when the choice is equally
parsimonious. The tree in Fig. 2.11a is a “DELTRAN tree.”

ACCTRAN and DELTRAN operate under a general optimality criterion that is
concerned with finding the most parsimonious character for each branch of the tree.
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Such characters are parts of sets of characters termed most parsimonious reconstruction
sets (MPR sets), which we will briefly discuss after considering ACCTRAN. The
important thing to keep in mind is that both ACCTRAN and DELTRAN will yield the
same results when there is no ambiguity, i.e., there are no equally parsimonious choices.
Although DELTRAN may favor parallelisms, it is quite possible that if you select
DELTRAN every homoplasy in your data set will be a reversal. In the following
sections, we concentrate on transformation series that show reversals and/or parallel-
isms on particular tree topologies, but you should remember that characters showing no
homoplasy are optimized in the same manner.

ACCTRAN

Farris (1970) pointed out that although a tree can be built with a Wagner algorithm,
this does not always guarantee that the individual characters assigned to the hypotheti-
cal ancestors (represented by common nodes) will be optimal given the topology of the
tree. Farris then provided an algorithm for optimizing these distributions. His algorithm
includes transformation series with two to many characters. We will use a less set-
theoretical description employing only binary transformation series. It will serve well
enough to give you an idea of how this kind of optimization works. This type of
optimization is called a “two pass” method (the Maddison et al. [1984] algorithm
discussed in Chapter 3 is an example of a “one pass” method). Using the algorithm, you
will assign certain characters to nodes in a pass from the terminal branches to the root
(the downward pass) and then reevaluate these assignments in a pass from the root to
the terminal branches (the upward pass). Transformation series of three or more states
require a bit of knowledge about set theory. Those interested should consult Farris
(1970) and Swofford and Madison (1987).

We have broken the process down into three phases, the setup, downward pass, and
upward pass. These rules work only in the binary case.

1. The Setup.—On the tree, label each terminal taxon and each ancestor (Fig. 4.5a).
Above the taxon name, place its character for a particular character transformation
series (Fig. 4.5a).

2. The Downward Pass.—Beginning with the terminal taxa and proceeding toward
the root node, assign characters to the ancestral node according to the following rules.

Rule 1.—If both terminal taxa have identical characters, label the node with that
character (Fig. 4.5b, R1).

Rule 2.—If they have different characters, label the node with both characters (Fig. 4.5b,
R2).

Rule 3.—If one taxon (terminal or ancestral) has a single character (0) and another
taxon (terminal or ancestral) has both characters (0,1), label their common node with
the majority  character (Fig. 4.5b, R3). If both characters are equally common
(possible with polytomies), then assign both characters.

Rule 4.—If both taxa have both characters (i.e., both are 0,1), then their common node
will have both characters (see Fig. 4.6a).
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Fig. 4.5.—ACCTRAN optimization. a. The setup. b. The downward pass. c. The upward pass. R1–
R6 are the application of the rules discussed in the text.
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3. The Root Node.—When you get to the root, label it with the ancestral character
(whether it is 0 or 1 or 0,1) regardless of what the last two taxa may indicate. In the “real
world,” this assignment would have been determined before you began by using the
Madison et al. (1984) algorithm discussed in Chapter 3. We have arbitrarily selected “0”
in these examples.

4. The Upward Pass.—Begin working upward from the root node to the terminal
taxa. The following rules apply to the upward pass.

Rule 5.—If a character assignment at a node is 0,1, then assign the character of the node
immediately below it (Fig. 4.5c, R5). (Equivalent to Rule 3, but going the other way.)

Rule 6.—If a character assignment is either 1 or 0, then do not change that character
assignment, even if the node below it is different (Fig. 4.5c, R6).
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0 1 0 1 0 0

a

Fig. 4.6.—State assignments on an ACCTRAN optimization pass. a. A downward pass. b. An upward
pass.

Example 4.3.—Simple character assignments.

In Fig. 4.6a, we show the character assignments on the downward pass and in Fig.
4.6b the character assignments on the upward pass. Each assignment is associated with the
rule applied.

Example 4.4.—Complex character assignments (Fig. 4.7).

As in Example 4.3, we illustrate character assignments for the downward pass (Fig.
4.7a) and the upward pass (Fig. 4.7b).
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ACCTRAN Exercises

Use the information in the accompanying figures to optimize the character distribu-
tions.

EXERCISE 4.7.—Use Fig. 4.8 for optimization and label the root node “0.”

1 1 0 0 1 1 0 0 1 0 1

0,11

0

00

1
10,1

0,1

1

1 1 0 0 1 1 0 0 1 0 1

11

0

00

1
11

1

1

a

b

Fig. 4.7.—Another example of ACCTRAN optimization. a. State assignments after the downward
pass. b. Nodes optimized after the upward pass.

1 1 0 000

Fig. 4.8.—Tree for ACCTRAN optimization (Exercise 4.7).
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EXERCISE 4.8.—Use Fig. 4.9 for optimization and label the root node “0.”

11 0011 00

Fig. 4.9.—Tree for ACCTRAN optimization (Exercise 4.8).

EXERCISE 4.9.—Use Fig. 4.10 for optimization and label the root node “0.”

1 1000 01

Discussion

ACCTRAN is a special case of a more general way to optimize characters on a tree
(Swofford and Maddison, 1987). It will always insure that the length of the tree is
minimized given a particular character matrix, but it will usually only show one
interpretation of how the characters evolved (a formal proof of Farris’s algorithm is
provided by Swofford and Maddison [1987]). That is, it favors reversals over repeated
origins when the choice is equally parsimonious. We can see this by examining the very
simple tree in Fig. 4.11a.

When you optimize the characters on the tree using ACCTRAN, the result shows a
reversal from 1 to 0 (Fig. 4.11b) (if this is not obvious, apply the ACCTRAN rules). The
tree has a length of two steps. However, there is another equally parsimonious tree that
interprets the evolution of a character coded “1” as a homoplasy (Fig. 4.11c). The
problem is ACCTRAN will never allow you to find this tree.

Fig. 4.10.—Tree for ACCTRAN optimization (Exercise 4.9).
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Let us think about the character assignments of these two trees. Obviously, they
differ. If we combine them into one tree, ancestor Y has a state set 0,1 rather than just 1
or 0 (Fig. 4.11d). Because this character set is the set that combines both possibilities, it
is termed the “MPR set” for that particular ancestor (Swofford and Maddison, 1987).
Because the MPR set contains two characters, we can assume that there are two equally
parsimonious interpretations of character evolution. In Fig. 4.11b, the evolution of
character 1 is accelerated; in Fig. 4.11c, the evolution of 1 is delayed.

Finding MPR Sets

We find MPR sets by evaluating the possible character assignments for each interior
node (i.e., each ancestor), which is accomplished by rerooting the tree at each of these
nodes, beginning with the node closest to the root and working toward the terminal
branches.

1. Proceeding up the tree (Fig. 4.12a) from the root (X), reroot the tree at the first
ancestral node (Y) (Fig. 4.12b).

2. Optimize the character assignment of this node by using the downward pass as
specified in ACCTRAN. The MPR set will be composed of the majority character using
Rule 3. Note that neither character is in the majority, so both (i.e., 0,1) are assigned to Y
(Fig. 4.12b).

3. Proceed to the next ancestral node (Z) and reroot the tree (Fig. 4.12c). Follow step
2. To reduce redundant calculations, use the MPR set of any ancestor whose MPR set
has already been determined. In Fig. 4.12c, note that we have used the MPR set of Y as
well as the character sets of C and D to determine the MPR set of Y. This is a short cut.
You are finished after all ancestral nodes have been evaluated.

Fig. 4.11.—Four views of a tree. a. The tree with characters for the terminal taxa and the root node.
b. The tree optimized by ACCTRAN. c. Another most parsimonious interpretation of the characters X
and Y. d. The most parsimonious resolution (MPR) set, combining the information in b and c.
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Fig. 4.12.—Finding the MPR set for clade ABCD. a. Tree. b. Tree rerooted at Y and optimized using
ACCTRAN. c. Tree rerooted at Z and optimized using ACCTRAN.

DELTRAN

DELTRAN is the opposite of ACCTRAN. It favors parallelisms when given the
chance to do so. To implement the DELTRAN option, you must be able to find the MPR
sets for each ancestral node.

1. Determine the MPR sets for each ancestral node by using the procedure outlined
above, and place them on the tree.

2. Implement DELTRAN as in the upward ACCTRAN pass, using Rules 5 and 6.

Example 4.5.—MPR sets and DELTRAN optimization.

We will use the tree in Fig. 4.13a to 1) determine the MPR sets for each ancestor and
2) optimize the tree using DELTRAN. Note that the number of terminal taxa used
decreases as the MPR sets for their common nodes are included as we go up the tree.
For example, A and OG are represented in Fig. 4.13c by S and its MPR set (0).

1. We determine the MPR sets for each hypothetical ancestor, working from the root
up the tree (Fig. 4.13b–g).

2. We place the MPR sets on the original tree (Fig. 4.14a).
3. Finally, we optimize the tree in an upward pass using Rules 5 and 6 (Fig. 4.14b).

DELTRAN Exercises

EXERCISE 4.10.—Using the matrix in Table 2.2 (p. 19) and the tree in Fig 2.11a (p.
21), optimize transformation series 3 and 4 using DELTRAN optimization. Then
optimize the tree using ACCTRAN. Compare your results with the trees in Fig.
2.11a, c. Use only the topology; disregard the characters on the tree.
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Fig. 4.13.—Finding the MPR sets (Example 4.5). a. Tree. b–g. MPR sets for each hypothetical
ancestor.
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Fig. 4.14.—DELTRAN optimization using the MPR sets in Fig. 4.13 (Example 4.5). a. The original
tree with MPR sets placed at the nodes. b. Each node optimized using DELTRAN.
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EXERCISE 4.11.—Use the tree in Fig. 4.15 to find the MPR set for each ancestor. Use
these sets to optimize the tree with DELTRAN. Then optimize using ACCTRAN.

1 1 000 00

Fig. 4.15.—Tree for MPR sets and DELTRAN optimization (Exercise 4.11).

CURRENT TECHNOLOGY

Modern computer packages like PAUP (Swofford, 1990) are composed of programs
containing a wealth of options. Actual analyses may take seconds, hours, or days.
Interestingly, most of the time spent in analyzing the data is not spent on tree building
per se but on evaluating tree topologies using a relevant optimality criterion. The
approach to finding the optimal tree can differ considerably from traditional methods.
Swofford and Olsen (1990) characterize three general approaches: 1) exhaustive
searches, 2) branch-and-bound searches, and 3) heuristic searches. The first two can
provide an exact solution if the data matrix is small enough. By exact solution we mean
that the resulting tree or set of trees will be the shortest tree(s) for the data given
maximum parsimony as the criterion. The heuristic search will find a short tree(s), but
there is no guarantee that the tree will be the shortest. Heuristic searches are performed
on much larger data sets instead of using searches guaranteed to find an exact solution
because for many large data sets there are no other alternatives (see below). The
following abbreviated characterization of these three approaches is abstracted from
Swofford and Olsen (1990).

1. Exhaustive search.—An exhaustive search consists of evaluating the data over
all possible trees. Because there are no other possible topologies unevaluated, the
shortest tree or set of trees will be found. As you will appreciate when you get to
Chapter 6, the number of possible tree topologies increases at a very rapid rate. An
exhaustive search on 10 taxa is very efficient, but the same procedure performed on 25
taxa may be prohibitive in terms of computer time.

2. Branch-and-bound search.—Branch-and-bound algorithms can provide an ex-
act solution for a larger number of taxa than exhaustive search can because the search
procedure it employs has a provision for discarding trees without evaluating them if
they meet certain criteria. Hendy and Penny (1982) first introduced branch-and-bound
algorithms to phylogenetic analysis, and a good description of what they do can be
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found in Swofford and Olsen (1990). In essence, branch-and-bound works with a tree of
possible trees termed a search tree (Fig. 4.16). The root of the search tree is a three-
taxon tree (unrooted so it is the only possible tree). From this root tree, other possible
trees are derived by adding additional taxa at each place where they might be added. So,
D could be added in one of three places to yield three trees, and E could be subsequently
added in any one of five places to these three trees, yielding the 15 trees in Fig. 4.16.
Now, let us place an upper bound on the search. The upper bound is the maximum
length a tree can obtain before it is eliminated. As we go from the root of the search tree
towards its tips, we will only reach the tips along a certain path if our upper bound is not
exceeded. If we exceed the upper bound, we cut off that branch and do not evaluate any
additional branches connected to it. Rather, we backtrack down the search tree and
proceed up another branch. If we find a tree that is better than the upper bound (i.e., a
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Fig. 4.16.—Trees illustrating the branch-and-bound algorithm. Redrawn from Swofford and Olsen
(1990).
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tree shorter than the one we used for the initial upper bound), we adopt this superior
standard for all subsequent analyses. Thus, we might eliminate additional trees that
would be acceptable given the old, more relaxed, upper bound. Trees that are not
eliminated are candidates for status as most parsimonious trees. If a better upper bound
is found, these trees are subject to further evaluation. What is left is the set of optimal
trees. This is the trick: by not evaluating all the branches to all the tips, we avoid an
exhaustive search without suffering loss of precision because we do not have to
evaluate tens, hundreds, thousands, or even millions of possible tree topologies that are
not close to the optimal solution. Obviously, we need to pick an initial upper bound
before the analysis begins. This can be done by picking a random tree and calculating its
tree length. For our example of five taxa (Fig. 4.16), we would pick any of the 15 trees,
calculate its tree length, and begin. If that tree turned out to be the worst possible tree,
then we would expect to quickly find a new, and lower, upper bound. If the tree turned
out to be the most parsimonious tree (a 15-to-1 shot), then the upper bound would be so
low as to quickly eliminate many of the less parsimonious trees. PAUP uses the next
category of methods, heuristic methods, to pick a near optimal tree whose length is used
as the initial upper bound. These and other tricks speed up the process (Swofford, 1990;
Swofford and Olsen, 1990).

3. Heuristic search.—Heuristic search begins by building a tree. One common way
to do this is via the Wagner algorithm. A number of other approaches can also be used,
depending on the computer package. The tree obtained may be optimal, especially if the
data are relatively free of homoplasy. However, it may not be optimal. The manner in
which taxa are added to the growing tree constrains the topologies that can be built from
taxa added subsequently, ending in a “local optimum,” i.e., a tree that is the “optimum”
given the constraints provided by the way the taxa were added but not necessarily the
best tree if all possible trees were evaluated. This situation is rather analogous to
proceeding along a reasonable path in a search tree but not having the option of
backtracking to try other possibilities. Heuristic search routines attempt to circumvent
local optima by branch swapping. Branch swapping involves moving branches to new
parts of the tree, producing new tree topologies. The data are optimized on the new
topology, and if the tree is shorter, it is subjected to additional branch swapping.
Eventually, these rounds of branch swapping will lead to an optimal tree or set of
optimal trees. Several pitfalls can be encountered, and strategies for avoiding them
must be adopted (Swofford and Olsen, 1990).

CHAPTER NOTES AND REFERENCES

1. Hennig argumentation is covered in some detail by Hennig (1966), Eldredge and
Cracraft (1980), and Wiley (1981a). It works well with relatively small data sets with
little homoplasy. However, we continue to be amazed to see how few homoplasies it
takes in a data matrix to yield more than one most parsimonious tree.

2. Those already familiar with data analysis will note that we have not discussed
alternative approaches to phylogeny reconstruction such as compatibility analysis,
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analysis of distance data (Farris, 1972, 1981, 1985, 1986; Felsenstein, 1984, 1986;
Hillis, 1984, 1985), likelihood methods (Felsenstein, 1973a,b, 1981; Thompson, 1986),
and bootstrap methods (Felsenstein, 1985; Sanderson, 1989). You should consult the
literature about these controversies.

3. Those interested in analysis of molecular data should consult Hillis and Moritz
(1990).

4. Finding the MPR set for transformation series with more than two characters is
not so easy and requires more set manipulations. Swofford and Maddison (1987)
outline the procedure and provide proofs of both Farris’s (1970) optimization algorithm
and their own algorithms. However, the paper is very technical. Farris (1970) gives a
clear example of how to optimize a multicharacter transformation series using
ACCTRAN.

5. Remember that ACCTRAN and DELTRAN will give the same solutions for
character evolution only if it is equally parsimonious to do so. The majority of
transformation series in a particular data matrix may not contain MPR sets with two or
more characters, and both ACCTRAN and DELTRAN will give the same values. Also,
consider the situation where we may have many equally parsimonious decisions to
make, each involving a different transformation series. We might prefer one transfor-
mation series to be interpreted as being subject to parallel evolution (DELTRAN) while
another is considered as being subject to reversals (ACCTRAN). In any one analysis,
however, we cannot “mix and match.” Given a particular topology, we can only opt for
a uniform DELTRAN or a uniform ACCTRAN optimization. The extent to which a
particular investigator opts for the interpretation that a particular transformation series
is “more likely” to be subject to parallelism than to reversal does not depend on an
optimization routine but on specific assumptions about the evolutionary constraints
placed on the descent of particular kinds of characters.
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CHAPTER 5

TREE COMPARISONS

In the early analyses of groups using phylogenetic techniques, only rarely did
investigators report more than one tree, frequently because the data were “clean,” i.e.,
relatively free from homoplasy, but sometimes because the investigator did not take the
time to explore the data set for additional trees. Computers have changed this. A
computer will take the time to find as many alternative trees as the program it employs
can identify. As a result, more trees are being reported, and measures are needed to sort
them out. In this chapter, we will introduce you to 1) some basic tree measures and 2)
consensus techniques, i.e., techniques for exploring the similarities and differences
between trees with differing branching structures.

SUMMARY  TREE MEASURES

Summary tree measures are designed to give you a set of basic “statistics” you can
use to evaluate the differences between two trees that have been generated from the
same data set. They are relative measures that say something about the basic structure
of the data, the optimization technique employed, and the algorithm used. They are not
very useful for comparing the results of two different data sets for the same taxa.

Tree Length

We have been working with tree length since Chapter 2. Tree length is calculated by
summing the number of character changes along each branch and internode of the tree.
For a given data set, the “best tree” is defined as the tree of shortest length because, as
we discussed in Chapter 2, it provides the most parsimonious description of all
homology and polarity arguments taken together. We hope that the shortest tree will
also be the best estimate of the actual common ancestry relationships of the taxa
analyzed. Two or more shortest trees represent equally parsimonious solutions to the
same data set for a particular analysis. There are two kinds of equally parsimonious
trees: 1) the set of trees that show the same common ancestry relationships but differ in
character interpretation and 2) the set of trees that differ in topology and thus represent
different views of the common ancestry relationships. These two types of equally
parsimonious trees have different qualities. For systematics and biogeography, equally
parsimonious trees that differ in character interpretations but have identical topologies
do not affect any subsequent analysis that takes advantage of the tree topology.
However, the differences among these trees might be important when dealing with tests
of evolutionary mechanisms and character evolution. Trees of differing topology
directly affect subsequent comparative analysis and can lead to problems in presenting
taxonomies because there are at least two different views of the common ancestry
relationships among the taxa involved in the analysis.
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The consistency index of a transformation series of discrete characters (c or ci) is the
ratio of the minimum amount of changes (steps) it might show (m) and the amount of
change (steps) it does show on a particular tree (s):

c = .

For binary transformation series, m = 1; for multicharacter series, the m-value will
equal the minimum number of steps possible. For example, a transformation series with
three characters (0, 1, and 2) would evolve a minimum of two steps. For simplicity, we
use only binary transformation series in both the examples and the exercises.

Consider TS 1 of Table 5.1. As a binary transformation series, m = 1. Now look at
Fig. 5.1. There has been one transformation from 1-0 to 1-1 and no reversals from 1-1 to
1-0. The number of steps (or length) of this series on the tree is s = 1. The consistency
index for this transformation series is

c = = 1.0.

Now consider TS 8. As a binary transformation series, m = 1. On the tree, however,
character 8-1 has arisen twice, so s = 2 and

c = = 0.50.m

Consistency Indices

Kluge and Farris (1969) introduced consistency indices as measures of how transfor-
mation series and entire data matrices “fit” particular tree topologies. Nontechnically,
transformation series with little or no homoplasy have high consistency index values
(1.0 is the highest value possible), whereas those that show considerable homoplasy
have low values. Aside from tree length, consistency indices are the most commonly
reported values for trees. Since their introduction in 1969, several modified consistency
indices have been suggested. We will cover the basics of these measures using the data
matrix in Table 5.1 and the trees in Fig. 5.1. We will first cover the measures for
individual transformation series and then consider the ensemble measures for entire
data matrices.

Table 5.1.—Data matrix for the hypothetical clade A–E and its sister group OG.

Transformation series
Taxon 1 2 3 4 5 6 7 8

OG 0 0 0 0 0 0 0 0
A 1 0 0 0 0 1 0 1
B 1 1 1 0 1 0 1 0
C 1 0 1 1 1 0 0 0
D 1 1 1 0 1 1 1 0
E 1 1 1 1 1 1 1 1

=

m
s

m
s

=
1
1

1
2s
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Now consider TS 6, another binary character with s = 1. Figure 5.1 shows that 6-0 has
given rise to 6-1 twice, once in taxon A and once in the ancestor of taxa D and E. The
consistency index for this character is

c =  = 0.50.

Although the consistency indices for TS 6 and TS 8 are identical, there is a difference
in their performance on the tree. TS 8 shows total homoplasy in the evolution of
character 8-1, whereas TS 6 shows only partial homoplasy in the evolution of 6-1. That

4-1
8-1

6-1

1-1

3-1
5-1

2-1
7-1

6-1

4-1
8-1

OG A C B D E

a

OG A B C D E

2-0

2-1

2-0 2-0

b

OG A B C D E

2-1

2-0

2-1 2-1

c

OG A B C D E

3-0

3-1

3-0

d

Fig. 5.1.—a. Tree for the hypothetical clade A–E and its sister group OG. b, c. Polytomies for TS
2. d. Polytomy for TS 3.

=m
s 2

1
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is, a derived character in TS 6 does lend support to the tree topology in Fig. 5.1, whereas
derived characters in TS 8 lend no support to the tree topology at all. Yet, they have
exactly the same consistency index values.

To overcome this problem, Farris (1989b) introduced the rescaled consistency index
(actually first introduced in Farris’ Hennig 86 [1989a]). The rescaled consistency index
(rc) is the product of the original consistency index (c) of Kluge and Farris (1969) and
the retention index (r) of Farris (1989b). The retention index measures the fraction of
apparent synapomorphy to actual synapomorphy. To calculate the retention index we
need the s-value, the m-value, and a new value called the g-value, for each transforma-
tion series. The g-value is a measure of how well a transformation series might perform
on any tree, i.e., how many steps would it take to explain evolution within the
transformation series under the worst possible condition. The case of any tree is the case
of the phylogenetic “bush,” a polytomy involving all taxa (including the outgroup).

Consider TS 2 in Table 5.1. In the worst possible circumstances (the phylogenetic
bush), what is the minimum number of steps needed to explain the evolution of the
characters in this transformation series? In Fig. 5.1b we have a bush (including the
outgroup). If we assign 2-1 to the root, then 2-0 would evolve three times, creating three
steps. If we assign 2-0 to the root, then 2-1 requires three steps (Fig. 5.1c). So, assigning
2-0 or 2-1 to the root results in the same number of steps, and g = 3. Any fewer number
of steps would require us to group taxa, and this would not represent the minimum
number of steps in the worst case (the g-value) but would instead represent the
minimum number of steps in the best case (the m-value).

Now consider TS 3. If we assign 3-1 to the root (Fig. 5.1a), then 3-0 has to evolve
twice (g = 2). If we assign 3-0 to the root, then 3-1 has to evolve four times. Parsimony
prefers two steps to four steps, so the best we can do under the worst tree topology is
two steps.

For binary characters we can apply a short-cut to determine the g-value. For a
transformation series with binary characters, the g-value is the smallest of the values for
the occurrence of the two characters. TS 3 contains two 3-0 values and four 3-1 values,
and g = 2. The number of 0-values and 1-values in TS 2 is equal, so the g-value equals
this value (g = 3). There is only a single 1-0 in TS 1, so g = 1.

The retention index, r, is defined by Farris (1989b) as

r =

When we calculate some of the r-values for the transformation series in Table 5.1
using the tree in Fig. 5.1a, we find the following values:

TS 2: r = = = 1.00

TS 6: r = = = 0.50

TS 8: r = = = 0.00.

1

3 – 1
3 – 1

2
2

3 – 2
3 – 1 2

2 – 2
2 – 1 1

0

g – s
g – m
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Note the contrast between TS 6 and TS 8. Although there is no actual synapomorphy
in TS 8, there is apparent synapomorphy (i.e., reflected by the original coding of the
homoplasies represented by the code “8-1”), and the retention index for this transforma-
tion series is zero. Some synapomorphy is present in TS 6, so its retention index is
greater than zero.

The rescaled consistency index (rc) for a transformation series is the product of the
consistency index and the retention index:

TS 2: rc = (1)(1) = 1.00

TS 6: rc = (0.5)(0.5) = 0.25

TS 8: rc = (0)(0.5) = 0.0.

Note the relative performance of the two transformation series showing homoplasy.
Finally, consider TS 1. This transformation series presents the special case m = s = g

= 1. Obviously character 1-1 represents a synapomorphy for the group given the
assumption that 1-0 is plesiomorphic. But what if 1-1 were plesiomorphic and 1-0 were
autapomorphic for the outgroup? There is no way to specify this, so we will calculate r
= 0 and rc = 0. Biologically, we “know” that 1-1 is a synapomorphy, and thus r = 1 and
rc = 1.0. But algorithmically, the only way to produce this result would be to include
another outgroup. Biologically, we can interpret this transformation series directly. A
character shared by all members of the ingroup is consistent with all possible topologies
and thus is not informative. Likewise, autapomorphies will yield r = 0 and rc = 0
because they are also consistent with all possible topologies (see Exercise 5.1).

Ensemble Consistency Indices

Ensemble consistency indices can be used to examine the relationship between an
entire data matrix and a particular tree topology. The most commonly used index is the
ensemble or “overall” consistency index (CI) of Kluge and Farris (1969), which can be
calculated very simply for a binary matrix by taking the ratio of the number of data
columns and the length of the tree. In general, a high CI indicates that the data matrix
“fits” the tree well (i.e., contains little homoplasy for the particular tree topology),
whereas a low CI does not.

Although the CI is the most commonly reported measure of fit between a character
matrix and a tree (Sanderson and Donoghue, 1989), it suffers from some problems.
Brooks et al. (1986) showed that the CI was influenced by the number of
autapomorphies that are present in the data matrix. The actual support for a particular
tree may be less than the apparent support because autapomorphies (c = 1.0) contribute
to the CI without supporting any particular tree topology. One solution to this problem
would be to eliminate autapomorphies from the calculations (Carpenter, 1988). Another
problem is the negative relationship between the CI and the size of the data set (Archie,
1989), rendering the CI suspect when comparing different groups of taxa or the same
taxa for different data matrices of various sizes.

In an effort to address some of these problems, Farris (1989b) suggested that
ensemble consistency indices be calculated using rescaled values. These calculations
are demonstrated in Example 5.1.
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Table 5.2.—Some values* used to calculate rescaled consistency indices (Example 5.1).

TS m s g ci r rc

1 1 1 1 1.00 0/0 0/0
2 1 1 3 1.00 1.00 1.00
3 1 1 2 1.00 1.00 1.00
4 1 2 2 0.50 0.00 0.00
5 1 1 2 1.00 1.00 1.00
6 1 2 3 0.50 0.50 0.25
7 1 1 3 1.00 1.00 1.00
8 1 2 2 0.50 0.00 0.00

Totals 8 11 18

* m = no. changes a character might show on a tree; s = no. changes a character does show on a tree; g =
minimum no. steps for each TS given a polytomy; ci = character consistency index; r = character retention index;
rc = character rescaled consistency index.

Example 5.1.—Rescaled consistency indices.

We will use Table 5.1 and Fig. 5.1a as the basis for calculating the ensemble values of
the retention index (R) and the rescaled consistency index (RC). To do this, we obtain
sums of the s-, m-, and g-values for each individual transformation series. These values
are shown in Table 5.2. Note that because we are working with binary transformation
series, m = 1 for each data column and thus M = 8 (the number of data columns). If we
sum each s-value, we arrive at S = 11, the length of the tree. The sum of the minimum
number of steps for each transformation series given a polytomy (the g-value) yields G
= 18. We can now calculate the CI, R, and RC:

CI = = = 0.727

R = = = 0.700

RC = (0.727) (0.700) = 0.509.

The RC excludes characters that do not contribute to the “fit” of the tree, preventing
inflation of the CI. The RC is superior to the method of excluding autapomorphies
because it not only excludes these characters, but also excludes totally homoplastic
characters, preventing them from artificially inflating the measure of fit (e.g., TS 8),
while allowing characters that are partly homoplastic but partly supportive of the tree
topology (e.g., TS 6) to contribute to the ensemble value.

The F-Ratio

The F-ratio (apparently first presented in the LFIT function of PHYSYS, a computer
program developed in 1982 by M. F. Mickevich and J. S. Farris) is another commonly

M
S 11

8

G –
M

G – S 18 –
1118 –
8
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F-ratio = f-statistic
patristic matrix

(100)( )

(= )2

28
(100)

7.14.=

reported tree statistic. It is a measure of the differences between the phenetic differences
between taxa and the path-length distances between these taxa as shown by a particular
tree. Low F-ratios are considered superior to high F-ratios. To calculate the F-ratio we
need 1) a data matrix, 2) a matrix of phenetic differences, and 3) a matrix of path length
(patristic) distances. The F-ratio is then calculated in the following manner.

Example 5.2.—F-ratio calculations.

1. From the data matrix (Fig. 5.2a), solve the phylogenetic relationships of the group
(Fig. 5.2b).

2. From the data matrix, prepare a matrix of phenetic distances (Fig. 5.2c). We do
this by constructing a taxon × taxon matrix. The phenetic difference between two taxa is
the sum of their absolute differences. So, the distance from OG to A is the difference
between the OG character vector and the A character vector, which is 2. The distance
between B and D is 3, etc.

3. From the phylogenetic tree, prepare a matrix of path-length (patristic) distances
(Fig. 5.2d) by preparing another taxon × taxon matrix. This time we count the steps
along the path specified by the tree. For example, there are two steps from OG to A and
from A to B. The difference between the phenetic and path-length distances becomes
apparent when we compare the A to D path. Phenetically, the difference between A and
D is 3. Patristically, the path-length difference is 5 because the tree interprets character
5-1 as a homoplasy.

4. Calculate the f-statistic. The f-statistic is the sum of the difference matrix. The
difference matrix is a matrix of differences between the phenetic and path-length
matrices (Fig. 5.2e). For example, there is no difference in the A/B cell, so the value is
“0,” whereas there is a difference of 2 in the A/D cell, so the value is “2.”

5. The F-ratio is calculated as the ratio of the f-statistic and the sum of the phenetic
distance matrix. To sum the phenetic distance matrix, you simply sum each column and
then add the column sums together. In this case, the F-ratio is

The F-ratio has two major drawbacks. First, it is not entirely clear what the F-ratio is
supposed to measure because we do not really know what a phenetic difference means
relative to a phylogenetic tree. Second, although the F-ratio can distinguish
autapomorphies from internal synapomorphies (i.e., synapomorphies not associated
with the root internode), it treats synapomorphies at the root internode as if they were
autapomorphies because the calculation of the F-ratio is independent of the placement
of the root.
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Fig. 5.2.—Matrices and tree illustrating F-ratio calculations (Example 5.2). a. Data matrix. b.
Tree. c. Phenetic distance matrix. d. Patristic distance matrix. e. Difference matrix.

Tree Summaries Exercises

EXERCISE 5.1.—Using the data matrix in Table 5.3, derive the tree and calculate the
tree length, CI, R, and RC.

Step 2

Step 4

Step 1

Step 3

b

OG

5-1

1-1

2-1

3-1
4-1

5-1

A B C D

TS 
 Taxon       1    2    3   4    5

   OG         0    0    0    0    0
   A            1    0    0    0    1
   B            1    1    0    0    0
   C            1    1    1    1    0
   D            1    1    1    1    1 

a

Taxon      OG   A    B    C     D
   
   OG          0
   A             2     0
   B             2     2     0
   C             4     4     2     0
   D             5     3     3     1     0      

Taxa 
c

Taxa 
Taxon      OG   A    B    C     D
   
   OG          0
   A             0     0
   B             0     0     0
   C             0     0     0     0
   D             0     2     0     0     0     

e

Taxa 
Taxon      OG   A    B    C     D
   
   OG          0
   A             2     0
   B             2     2     0
   C             4     4     2     0
   D             5     5     3     1     0     

d
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EXERCISE 5.2.—Using the matrix in Fig. 5.2a, calculate the tree length, CI, R, and
RC for the tree in Fig. 5.2b.

EXERCISE 5.3.—Calculate the tree length, CI, R, and RC for the taxa and characters
shown in Table 5.4 and Fig. 5.3.

Table 5.3.—Data matrix for calculating summary statistics (Exercise 5.1).

Transformation series
Taxon 1 2 3 4 5 6 7 8

X (outgroup) 0 0 0 0 0 0 0 0
A 1 1 0 0 0 0 0 1
B 1 1 1 1 0 0 0 0
C 1 1 1 1 1 1 1 0

Table 5.4.—Data matrix for calculation of tree length, CI, R, and RC from Fig. 5.3 (Exercise 5.3).

Transformation series
Taxon 1 2 3 4 5 6 7 8

OG 0 0 0 0 0 0 0 0
A 1 0 0 0 1 1 1 1
B 0 1 0 0 1 1 1 0
C 0 0 1 0 0 1 1 0
D 0 0 0 1 0 0 1 1

Fig. 5.3.—The tree used to calculate tree length, CI, R, and RC (Exercise 5.3).

7-1

6-1

4-1
5-1

3-1
2-1 1-1

8-1

8-1

OG D C B A



KU MUSEUM OF NATURAL HISTORY, SPECIAL PUBLICATION No. 1980

EXERCISE 5.4.—Derive the tree and calculate the tree length, CI, R, and RC for the
taxa and characters shown in Table 5.5.

Table 5.5.—Data matrix for calculation of tree length, CI, R, and RC (Exercise 5.4).

Transformation series
Taxon 1 2 3 4 5 6 7 8 9 10

Outgroup 0 0 0 0 0 0 0 0 0 0
M 1 1 0 0 1 1 1 1 0 0
N 1 1 1 1 1 1 1 0 1 0
O 1 1 1 1 0 0 0 0 0 1

EXERCISE 5.5.—Derive the tree and calculate the tree length, CI, R, and RC for the
taxa and characters shown in Table 5.6.

Table 5.6.—Data matrix for calculation of tree length, CI, R, and RC (Exercise 5.5).

Transformation series
Taxon 1 2 3 4 5 6 7 8 9 10 11

OG 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 1
B 1 1 1 0 0 1 1 0 0 0 0
C 1 1 1 0 0 1 1 0 0 1 1
D 1 1 1 1 1 1 0 1 1 0 0
E 1 0 1 1 1 0 0 1 1 0 0
F 1 1 1 0 0 0 0 1 1 0 1

CONSENSUS TECHNIQUES

One easy way of dealing with a set of topologically different but equally parsimoni-
ous trees or a set of topologically different trees derived from different data sets is to
combine their information in some manner. Consensus trees are trees that combine the
information, or knowledge claims, about grouping contained in two different trees into
a single tree. As such, consensus trees must be used very carefully. It would be
tempting, for example, to decide that a consensus tree, containing all the information
from two different but equally parsimonious trees, gives you the best estimate of the
phylogenetic relationships among groups. However, this is not true. In this section, we
will cover some of the basic consensus techniques and give you some guidelines for



TREE COMPARISONS 81

A B C D E

1-1

6-1

2-1
3-1

4-15-1
5-1

1-1

a

A B C D E

6-1

2-1
3-1

5-1
4-1

4-11-0

1-1

b

using them. Like the Wagner algorithm section of Chapter 4, we do not expect that you
will use the techniques presented here to generate consensus trees because the computa-
tional effort for even simple trees is rather great. Instead, these exercises are designed to
give you a concept of what these trees do to groups elucidated by parsimony. We will
cover three kinds of trees that can be generated by different consensus methods. Each
can be used in different situations to answer different questions.

Strict Consensus Trees

Strict consensus trees (Sokal and Rohlf, 1981) contain only those monophyletic
groups that are common to all competing trees. The ellipses in a Venn diagram can
represent these groups. (We shall make extensive use of Venn diagrams in this and
following sections, so you might want to look back at Chapter 1 for a quick review, then
try the Venn diagram Quick Quiz.)

Example 5.4.—A strict consensus tree.

The two trees shown in Fig. 5.4 have different knowledge claims about the relation-
ships of taxa C, D, and E. These trees are logically inconsistent, but they do contain
some common knowledge claims.

We construct a strict consensus tree for these alternative trees in the following
manner.

1. Draw Venn diagrams for each tree (Fig. 5.5a, b).
2. Combine the Venn diagrams into a single diagram (Fig. 5.5c). It should come as

no surprise that the groupings intersect.
3. Erase all intersecting ellipses (Fig. 5.5d). The result is a consensus Venn dia-

gram.
4. Translate the consensus Venn diagram into a strict consensus tree (Fig. 5.6).

Fig. 5.4.—Two hypotheses of the relationships among taxa A–E (Example 5.4).
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A B C D E

A B C D E

A B C D E

A B C D E

a

b

c

d

Fig. 5.5.—Obtaining a strict consensus Venn diagram. a, b. Venn diagrams of the original trees in Fig.
5.4. c. Combined Venn diagrams. d. Strict consensus Venn diagram.

EXERCISE 5.6.—Using the trees shown in Fig. 5.7, construct a strict consensus tree
using Venn diagrams.

Example 5.5.—Another strict consensus tree.

Our first example concerned trees that contained logical inconsistencies. Strict
consensus trees, however, also deal with different trees, or parts of trees that do not have
logically inconsistent topologies. In such cases, the strict consensus tree would be the
tree of lowest resolution. Consider the trees in Fig. 5.8a–c. If we employed Venn
diagrams, we would see that these trees are logically consistent with each other. The
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A B C D E

Fig. 5.6.—A strict consensus tree of the taxa A–E derived from Fig. 5.5d.

A B C D E

a

A B C D E

b

Fig. 5.7.—Phylogenetic trees for construction of strict consensus tree (Exercise 5.6).

strict consensus tree (Fig. 5.8d) represents the “lowest common denominator” concern-
ing the knowledge claims of the three trees. For example, in moving A to the root node,
we cannot maintain B and C as a monophyletic group, even though two of the three
trees (5.8a, b) contain this grouping. Why? Because the third tree (5.8c) makes the
claim that A, B, and C form a monophyletic group.

Adams Trees

Adams consensus trees are designed to give the highest “resolution” possible
between two or more trees. When these trees are logically inconsistent, the taxa
responsible for the conflict are relocated. Thus, Adams consensus trees do not necessar-
ily reflect monophyletic groups that are supported by the original data matrix. A
detailed description of Adams trees can be found in Adams (1972). He presents two
cases, trees with labeled nodes (e.g., specified ancestors) and trees with unlabeled nodes
(trees of common ancestry). We will deal only with the second case, trees with
unlabeled nodes.

Adams techniques are built around several steps. The investigator partitions the taxa
into sets across each of the trees, beginning with the root node. This partitioning groups
taxa into sets based on their connection via a branch to the root node. For example, the
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B C A X

B C A X

a

c

B C A X

B C A X

b

d

Fig. 5.8.—Three trees (a–c) and their strict consensus tree (d).

partition sets for Fig. 5.8b are {X} and {ABC}, the sets of taxa connected to the root via
a branch. (Note that {ABC} is not subdivided into {A} and {BC} at this time. Such a
subdivision would happen only in the next round when the node common to these taxa
alone is considered.) The investigator then compares these sets across all trees to find
partition products, which are the sets (=taxa and/or monophyletic groups of taxa)
common to each of the original trees. For example, the tree in Fig. 5.8a has the partition
sets {BC}, {A}, and {X}. The partition products of the trees 5.8a and 5.8b are [X], [A],
and [BC]. The set {ABC} is not a product because it does not appear in the partition sets
common to both trees. Note that single taxa as well as sets of taxa can be products.
However, single taxa cannot be further partitioned, and sets with only two taxa are
automatically partitioned into only the two single taxa. Note that nonempty partition
products require at least one taxon to be part of the partition sets compared between
trees. Finally, the method works from the root of the original trees outwards, identifying
partition sets until the terminal taxa are reached. Any taxa partitioned out are not
considered at higher nodes even if they are parts of monophyletic groups in one or more
of the original trees.

Example 5.6.—For this example, we will use the phylogenetic trees shown in Fig.
5.8a–c. Because the trees contain only four taxa, we examine only two nodes; the
second node we examine contains only two taxa.

1. Partition the taxa into partition sets connected to the root node. This yields the
following partition sets for each tree.
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Tree 5.8a (3 partition sets): {X}, {A}, {BC}
Tree 5.8b (2 partition sets): {X}, {ABC}
Tree 5.8c (2 partition sets): {X}, {ABC}

2. Determine the partition products by finding the intersections (common set ele-
ments) of each partition set that yields a nonempty partition product. The simplest of
these partition products is the intersection of the sets {X}, {X}, and {X}, yielding [X]
as the partition product. Another is formed from the intersections of {A}, {ABC}, and
{ABC}, yielding [A] as the partition product. The final product is formed by the
intersections of {BC}, {ABC}, and {ABC}, yielding [BC] as the partition product.

3. From the root, proceed to the next node that contains more than one taxon and
repeat the partitioning and determine the partition products as in steps 1 and 2. Repeat
up the branch or along sister branches until all terminal taxa are partitioned. In this
example, there is only one final node that needs to be considered, the node leading to
{BC} in tree 5.8a and to {ABC} in trees 5.8b and 5.8c. Note that {A} has already been
partitioned, so the only products of partition are [BC] for each of the three trees.

4. Form the Adams consensus tree from the sets determined by partitioning, begin-
ning at the root and using the partition products as sets. Figure 5.9a shows the Adams
consensus tree derived from step 4. The first partition products, [A], [X], and [BC], are
joined at the root node. The set {BC} is automatically partitioned (there are only two
terminal taxa), yielding the dichotomy (Fig. 5.9b).

Example 5.7.—For this example, we will use the trees shown in Fig. 5.10a–c. These
trees contain more taxa and nodes and will allow us to form some additional partition
products that are not trivial (i.e., that contain more than one or two taxa).

1. Form the first partition sets for the three trees. Note that the partition sets of trees
5.10a and 5.10c are exactly the same, although the hypotheses of common ancestry
within these groups are different.

Fig. 5.9.—Adams consensus tree for Example 5.6. a. Result of adding the first partition products. b.
Final Adams consensus tree.

BC A X

a

B C A X

b
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M N O P Q M Q N O P

a b

M N O P Q

c

Fig. 5.10.—Trees for construction of Adams consensus tree (Example 5.7).

Tree 5.10a (2 partitions): {M}, {NOPQ}
Tree 5.10b (2 partitions): {MQ}, {NOP}
Tree 5.10c (2 partitions): {M}, {NOPQ}

2. Determine the partition products.

Partition product 1: {M}, {MQ}, {M} = [M]
Partition product 2: {NOPQ}, {NOP}, {NOPQ} = [NOP]
Partition product 3: {NOPQ}, {MQ}, {NOPQ} = [Q]

Note that the partition set {NOPQ} of both trees 5.10a and 5.10c have been used twice
because one element (Q) appears in a different section of Fig. 5.10b and the other
elements appear in a different set {NOP}. Also note that other combinations are
possible, but they contain no interesting taxa. For example, the intersection of {M}
from tree 5.10a and {NOPQ} from 5.10c yield an empty set.

3. Proceed to the next node up from the root of each tree and determine the partition
sets, deleting any taxa that might have already been partitioned as single taxa.

Tree 5.10a (2 partitions): {N}, {OP}
Tree 5.10b (2 partitions): {N}, {OP}
Tree 5.10c (3 partitions): {N}, {O}, {P}

Note that Q does not appear in either tree 5.10a or 5.10c because it has already been
partitioned. As we will see, Q will join the Adams tree at the root because it is a partition
product of the root node.

4. Form the partition products.
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Partition product 1: {N}, {N}, {N} = [N]
Partition product 2: {OP}, {OP}, {O} = [O]
Partition product 3: {OP}, {OP}, {P} = [P]

5. All terminal taxa have been partitioned. Form the consensus tree, beginning from
the root and connecting each product of the partition associated with each node (Fig.
5.11).

M Q N O P

Fig. 5.11.—Final Adams consensus tree for Example 5.7.

EXERCISE 5.7.—Using the trees in Fig. 5.12, construct an Adams consensus tree.

A B C D

a

A B C D

b

Fig. 5.13.—Trees for construction of Adams consensus tree (Exercise 5.8).

A B C D E

b

A B C D E

a

EXERCISE 5.8.—Using the trees in Fig. 5.13, construct an Adams consensus tree.

Fig. 5.12.—Trees for construction of Adams consensus tree (Exercise 5.7).
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Majority Consensus Trees

Majority consensus trees operate on a “majority rule” basis (Margush and
McMorris, 1981), therefore the consensus tree may be logically inconsistent with one
or more of the original parsimony trees. If you have one tree that hypothesizes that A
and B are more closely related to each other than either is to C (Fig. 5.14a) and two trees
that hypothesize that B and C are more closely related to each other than either is to A
(Fig. 5.14b, c), then the majority consensus tree will have the latter topology (Fig.
5.14d). If there is an “even vote,” then the result is a polytomy. If the trees are logically
consistent, then the most resolved tree is preferred (just as in the case of Adams
consensus trees).

A B C

a

A B C

b

A B C

c

A B C

d

Fig. 5.14.—Three trees (a–c) and the majority consensus tree (d) for taxa A–C.

EXERCISE 5.9.—Use the principles presented above to construct a majority consen-
sus tree for the trees shown in Fig. 5.15.

Z Y X W V Z Y X W V

Z Y X W V

a b

c

Fig. 5.15.—Trees for construction of majority consensus tree (Exercise 5.9).
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EXERCISE 5.10.—Using the trees in Fig. 5.16, construct a strict consensus tree, an
Adams consensus tree, and a majority consensus tree.

A B C D E F G H

a

A B C D H E F G

b

A B C D E F G H

c

Fig. 5.16.—Trees for construction of strict, Adams, and majority consensus trees (Exercise 5.10).

CHAPTER NOTES AND REFERENCES

1. The use of CI to characterize the amount of homoplasy for a particular tree is
controversial, and other indices have been suggested, including the homoplasy excess
ratio (Archie, 1989) and the retention index (Farris 1989b). See also papers by Farris
(1990) and Archie (1990) for various opinions regarding these measures and the use of
CI.

2. Nelson (1979) is often credited as the source for strict consensus trees. However,
he  really described component analysis, which possesses qualities of clique analysis
(Page, 1987, 1988, 1989). The resulting trees may fit the description of either strict or
majority rule consensus trees or no particular consensus tree at all, depending on the
number of trees involved. The use of consensus trees of all types has increased in the
last few years, probably because they offer what appears to be a simple solution to the
difficult problems associated with choosing among several equally parsimonious trees.
However, we feel that consensus trees solve no such problems and their use in this
manner has the effect of avoiding the difficult problems associated with equally
parsimonious trees. Having many equally parsimonious trees may be the result of
insufficient study (a lack of sufficient data) or chaotic evolution in the particular data
sets studied, reflecting a complex history of reticulation or homoplastic evolution. You
should be extremely careful when using consensus trees to investigate specific ques-
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tions or to organize your data. A consensus tree should not be presented as a phylogeny
unless it is topologically identical with one or more of the most parsimonious trees.

3. Competing trees fall into three overlapping categories. 1) The competing trees
may be equally parsimonious. 2) They may be equally parsimonious but have different
topologies. 3) They may be close but not equal in terms of tree length. Equally
parsimonious trees that have the same topology result from different interpretations of
character evolution. Frequently, this involves equally parsimonious interpretations of
parallelism and reversals. When different topologies are involved, the trees have
different knowledge claims concerning the relationships of the taxa studied. Such trees
may be logically consistent or logically inconsistent with each other. You can use the
Adams consensus method to explore these differences. Loss of resolution occurs when
there is an increase in the number of nodes with polytomies or when the number of
branches involved in a polytomy increases. The taxon that causes a loss of resolution
must have different placements on at least two trees. You can check the original trees
just in these areas, or you can do pairwise comparisons of the original trees to identify
the conflicts. Once these trees have been identified, you can find the taxa involved and
the characters that are responsible for the conflict. You might also use the strict
consensus method to determine what monophyletic groups are supported by all of the
original trees. Finally, you might use the Adams method for a set of trees that are within
certain tree-length values of each other. Funk (1985) found this approach useful in her
study of hybrid species, when the differing placements of certain species helped spot
potential hybrids and lead to hypotheses concerning their parental species. Table 5.7
summarizes some of the uses and potential problems with various kinds of consensus
trees.

Table 5.7.—Uses and potential problems of the various kinds of consensus trees.

Kind of tree Questions asked Characteristics

Strict 1) What groups are always 1) Loss of resolution may be extreme.
monophyletic? 2) Useful as a phylogeny only if

topologically identical with one of
the original parsimony trees.

Adams 1) What is the most highly 1) “Strange” taxon placements not
resolved tree that will identify found in any original tree.
problem taxa? 2) Useful as a phylogeny only if

2) Are these trees logically topologically identical with one of
consistent? the original parsimony trees.

Majority 1) What is a summary of the 1) Most useful when there are very
competing trees where the little conflicting data.
dominant pattern prevails? 2) Useful as a phylogeny only if

topologically identical with one of
the original parsimony trees.

3) Ties can be avoided only if you
start out with an odd number of
trees (A. Kluge, pers. comm.).



CHAPTER 6

CLASSIFICATION

A classification is a groups-within-groups organization of taxa of organisms. This
type of organization can be represented in many different ways. Most classifications
take the form of Linnaean hierarchies, with the relative positions of groups and
subgroups being tagged with a Linnaean rank (phylum, family, genus, etc.).
Classifications can also be represented graphically, using a tree structure or a Venn
diagram (see Chapter 1).

Nothing marks the phylogenetic system as different from competing systems so
much as the issue of classification. Many investigators are drawn to the advantages of
using phylogenetic techniques to infer common ancestry relationships, but they seem to
balk at excluding paraphyletic groups. Much acrimony is produced in the name of
“tradition,” “common sense,” or other emotional side issues, rather than focusing in on
the one central issue: should biological classifications be based on phylogeny? We
answer “yes” because we are evolutionary biologists. Actually, phylogenetic system-
atists operate under only two basic principles. First, a classification must be consistent
with the phylogeny on which it is based. Second, a classification should be fully
informative regarding the common ancestry relationships of the groups classified.
Further, we recommend that while implementing these principles, you make every
attempt to alter the current classification as little as possible.

The principle of consistency can be met if the investigator includes only monophyl-
etic groups. The principle of information content can be approached by several means.
The conventions we outline in this chapter will allow you to change existing
classifications minimally to bring them “in line” with current hypotheses of genealogi-
cal relationships. The principle of minimum change represents a conservative approach
that provides for historical continuity of classification in the change from
preevolutionary concepts (such as distinctiveness and identity) to evolutionary con-
cepts (common ancestry relationships).

Often, taxonomists are categorized as either “splitters” or “lumpers.” Actually,
phylogeneticists are neither. By following the principles of monophyly and maximum
information content, we seek to establish classifications that reflect natural groups.
Sometimes this requires breaking up a paraphyletic or polyphyletic group into smaller
groups. At other times these goals are met by combining smaller groups into more
inclusive groups. The categories of “splitters” and “lumpers” belong to the past when
authority was more important than data.

The topics covered in this chapter are 1) how to evaluate existing classifications
relative to new ideas about the common ancestry relationships of the organisms studied
and 2) how to construct classifications using conventions designed to conserve as much
of the old taxonomies as possible.
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EVALUATION  OF EXISTING  CLASSIFICATIONS

Once the investigator has analyzed her data and arrived at a phylogenetic tree (a
hypothesis of common ancestry relationships), she will wish to compare her results
with the ideas found in previous studies. Most of the ideas of relationship that exist in
the literature are embodied in classifications. These classifications have connotations
regarding the relationships that the previous investigator felt were important to the
taxonomy of the group. The ideas embodied in the classification may represent the
intuition of the previous investigator or they may refer very specifically to some
evolutionary principle the investigator had in mind. Whatever the ideas held by the
original taxonomist, it is up to our investigator to compare her hypothesis with the
existing classification to determine how that classification should be changed to bring it
in line with the phylogeny. This is accomplished by comparing the structure of the
classification with the structure of the phylogenetic tree. If the existing taxonomy is
logically consistent with the phylogeny, then the first criterion is met. If it is fully
informative about the phylogeny, then the second criterion is met. Because logical
consistency is the most basic requirement, we will cover it first.

Logical Consistency

As outlined by Hull (1964), logical consistency exists between a classification and a
phylogeny if, and only if, at least one phylogeny can be derived from the classification
that is, itself, the phylogeny. You might get the idea that it may be possible to derive
more than one phylogeny from a classification. This is true for some classifications but
not for others. However, a more basic question must be addressed. How do we actually
go about comparing a phylogeny and a classification? The answer is fairly straightfor-
ward. The phylogeny exists in tree form and the classification exists in the form of a
groups-within-groups hierarchy. We therefore must convert the hierarchy of the
classification into tree form. Once in tree form, we can make a side-by-side comparison.

Example 6.1.—Converting a classification to tree form.

The following classification is of the family Goodeidae, North American and Middle
American killifishes related to the guppies and swordtails and commonly found in
aquarium stores (Parenti, 1981).

Family Goodeidae
Subfamily Empetrichthyinae

Genus Empetrichthys
Genus Crenichthys

Subfamily Goodeinae
(several genera)

We convert the classification to tree form using the groupings inherent in the
classification; for example, there are two subfamilies within the family. The
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classification in tree form looks like Fig. 6.1. (We have included the names of the
groups and subgroups to show the direct connection between this tree and the original
classification. It is not necessary to do so once you have the idea firmly in mind.)

There are several important things about this classification in tree form. First, it
exactly reflects the groups-within-groups organization of the ranked classification.
Internodes take the place of higher group names. Second, it is entirely dichotomous.
This means that no additional diagrams can be derived from it. Classifications that are
fully ranked and thus have tree structures that are entirely dichotomous have no
derivatives. Last, it is not a phylogeny. We cannot stress this last point enough. The
classification might be based on phenetic principles. It might be arbitrary. It might be
intuitive. Or, it might be phylogenetic. To know which, we would have to read the
paper. None of us is an expert in goodeid relationships, but it turns out that Parenti
(1981) also performed a phylogenetic analysis, so we can take her hypothesis as a basis
for comparison (Fig. 6.2).

Now, we can place the classification beside the phylogeny. Note that they are entirely
identical in their topologies. No claims of group-within-group relationships are differ-
ent from the claims of common ancestry. Let us imagine that Parenti had chosen to
classify her groups in a different way.

Family Goodeidae
Subfamily Empetrichthyinae

Genus Empetrichthys
Subfamily Crenichthyinae

Genus Crenichthys
Subfamily Goodeinae

(several genera)

Fig. 6.1.—Parenti’s (1981) classification of Goodeidae in tree form.

Empetrichthys Crenichthys Goodeinae

Empetrichyinae

Goodeidae
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Conversion of the classification to tree form would produce Fig. 6.3.
We now have a situation in which there is a trichotomy among the three subgroups.

Whenever there is a polytomy, we can derive additional hypotheses about possible
subgroupings. These hypotheses represent all of the possible resolutions of the
classification tree, given its structure. That is, we can derive possible resolutions that are
consistent with the original classification. Following the principle of logical consis-
tency, if one of these derivatives is the phylogeny, then the classification is logically

Goodeinae

First 2–7 middle anal radials absent 
   or fused to proximal radials

Viviparous reproduction

No pelvic fins or fin supports

Empetrichthys Crenichthys

“Y”-shaped first epibranchial

Distal arm of premaxilla straight

Dorsal processes of maxilla reduced

Other characters associated with 
   viviparous reproduction

Muscular urogenital system in 
   males

First anal fin ray rudimentary

Unbranched anterior anal fin rays 

Fig. 6.2.—A phylogenetic tree of goodeid relationships (from Parenti, 1981).

Fig. 6.3.—An alternative classification of goodeids in tree form.

Empetrichthys Crenichthys Goodeinae

Goodeidae
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consistent with the phylogeny even if it is not fully informative about the relationships
hypothesized in the phylogeny. The number of possible trees can be determined
mathematically. For the trichotomy in Fig. 6.3, there are three dichotomous resolutions
(Fig. 6.4a–c). Note that one of them (Fig. 6.4b) is topologically identical to the
phylogeny. Therefore, even though the branching topology of the classification (Fig.
6.3) is not the same as the topology of the phylogenetic hypothesis (Fig. 6.2), the
classification is logically consistent with the phylogeny because one possible derivation
of the classification is topographically identical to the phylogeny.
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Goodeidaea

Fig. 6.4.—Three possible phylogenetic trees of goodeids derived from the relationships implied by
the classification in Fig. 6.3.

Working out derivative classifications in tree form is easy when the number of
possible derivatives is small. The method becomes cumbersome, however, when the
number of possible derivative trees is large. Fortunately, there is an alternative method
for checking the logical consistency of a classification with a particular phylogeny, the
use of Venn diagrams. In Fig. 6.5, we have converted the phylogeny (Fig. 6.5a), the first
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classification (Fig. 6.5b), and the second classification (Fig. 6.5c) into Venn diagrams.
We then “layer” all three diagrams and check for overlap between ellipses, which is
equivalent to checking for overlapping sets in set theory. If there are no overlaps, the
classification(s) is logically consistent; if there is overlap, the classification(s) is logi-
cally inconsistent. In this case there is no overlap, so both classifications are logically
consistent with the phylogeny (Fig. 6.5d).

Fig. 6.5.—Venn diagrams of goodeids. a. The goodeid phylogeny. b, c. Two different
classifications. d. The result of combining a, b, and c into a single diagram.

Empetrichthys Crenichthys Goodeinae

Empetrichyinae
Goodeidae

Goodeidae

Empetrichthys Crenichthys Goodeinae

Empetrichthys Crenichthys Goodeinae

Empetrichthys Crenichthys Goodeinae

a

b

c

d
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You can easily see that a classification can be logically consistent with a phylogeny
without being fully informative about the common ancestry relationships implied in the
phylogeny. In fact, the only way to have a classification that is logically inconsistent
with the phylogeny is to have a classification for which we can derive no tree that is the
original phylogeny. More formally, a classification is logically inconsistent with a
phylogeny if no derivative of that classification is the original phylogeny. In terms of
our Venn diagrams, a classification is logically inconsistent with the phylogeny if its
Venn diagrams have overlapping ellipses. In other words, they are logically inconsistent
if they violate the inclusion/exclusion rule.

We may be making it sound like most classifications are logically consistent with the
phylogeny you are likely to generate with your analysis. Nothing could be further from
the truth. You will find that most classifications are logically inconsistent with your
hypotheses of common ancestry. Why? Because most existing classifications contain
paraphyletic and even polyphyletic groups. Let’s look at the effects of the inclusion of a
paraphyletic group in the correspondence of classifications to phylogenies.

Example 6.2.—The very distinctive Cus.

Investigator Smith has performed a phylogenetic analysis on the genera comprising
the family Cidae. She has arrived at the phylogenetic hypothesis shown in Fig. 6.6. This
family was well known to previous investigators. What struck these investigators was
how different members of the genus Cus were from other members of the family. This
distinctiveness was embodied in the traditional classification.

Family Cidae
Subfamily Ainae

Genus Aus
Genus Bus

Subfamily Cinae
Genus Cus

Smith wants to know if the current classification is logically consistent with her
phylogenetic hypothesis. To do so, she must perform the following steps.

1. She prepares a Venn diagram for the classification and another Venn diagram for
the phylogeny.

2. She layers the Venn diagram of the classification over the Venn diagram of the
phylogeny.

3. If ellipses do not overlap, then she knows that the classification is logically
consistent with the phylogeny. If one or more ellipses overlap, then the classification is
logically inconsistent with the phylogeny.
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Therefore, Smith does the following for the Cidae.

1. The classification is converted to a classification tree (Fig. 6.7a) and then into a
Venn diagram (Fig. 6.7c). (As you gain experience, you can draw the Venn diagram
directly from the classification.) The phylogeny (Fig. 6.7b) is then converted into a Venn
diagram (Fig. 6.7d).

Fig. 6.7.—The Cidae classification. a. Tree form. b. The phylogeny. c. Venn diagram of a. d. Venn
diagram of b. e. Venn diagram combining c and d.

Aus Bus Cus

a

CusAus Bus

b

Aus Bus Cus

c
Aus Bus Cus

d

Aus Bus Cus

e

BC

ABCABC

AB

Aus Bus Cus

Fig. 6.6.—The phylogeny of the family Cidae (Example 6.2). The phylogeny and the relative
amounts of change along each branch are taken as “true.”
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Table 6.1.—The total number of possible derivative trees for polytomies of n branches. Internodes
cannot be occupied by “ancestors” (from Felsenstein, 1977).

n All trees Dichotomous trees

3 4 3
4 26 15
5 236 105
6 2752 945
7 39,208 10,395
8 660,032 135,135
9 12,818,912 2,027,025

10 282,137,824 34,459,425

2. The Venn diagrams are layered (Fig. 6.7e).
3. The Venn diagram of the phylogeny (Fig. 6.7d) and the Venn diagram of the

classification (Fig. 6.7c) overlap (Fig. 6.7e); Bus is a member of the group BC in the
Venn diagram of the phylogeny, and it is a member of the group AB in the Venn diagram
of the classification. Therefore, the classification is logically inconsistent with the
phylogeny.

Smith, realizing that she cannot tolerate a classification that is logically inconsistent
with the evolution of the Cidae, creates the following classification.

Family Cidae
Subfamily Ainae

Genus Aus
Subfamily Cinae

Genus Bus
Genus Cus

Determining the Number of Derivative Classifications

Although Venn diagrams are the most direct route to determining whether a
classification is logically consistent with a phylogeny, you might also wish to calculate
the number of derivative classification trees for a particular classification. The number
of alternative classifications that can be derived from a particular classification is
directly related to the number of polytomies in the classification’s branching structure.
Felsenstein (1977) presents tables to determine the number of tree topologies that can
be derived from a basic tree with multifurcations (polytomies). We have reproduced
parts of one of these tables as Table 6.1. Note that the numbers refer only to the number
of terminal taxa. Other tables must be consulted if ancestors are included.

Example 6.3.—Classification of the hypothetical Xaceae.

The Xaceae is classified into three major subgroups, as shown in the classification
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tree in Fig. 6.8. We calculate the number of trees that can be derived from this
classification in the following manner.

1. Determine if the phylogeny to be compared is dichotomous or contains
polytomies. In this example, we assume that it is a dichotomous phylogeny.

2. Select the appropriate column in Table 6.1. In this case, we use the column on the
right (dichotomous trees).

3. Determine the number of branches for each polytomy.
4. Using Table 6.1, find the number of trees possible for each polytomy. Multiply all

of the values obtained in step 3 together to obtain the total number of derivative
classification trees:

(3)(3)(15) = 135.

Thus, there are 135 possible dichotomous trees that can be derived from our
classification of Xaceae.

Classification Evaluation Exercises

Each exercise consists of one or more classifications and a phylogenetic tree. You are
asked to 1) convert the classification into tree form, 2) state the number of possible
derivative trees that can be obtained, and 3) evaluate the classification in terms of its
consistency with the phylogeny.

EXERCISE 6.1.—Phylogeny of the Recent tetrapod vertebrates.

For classifications, see Fig. 6.9. For the phylogenetic tree, see Fig. 6.10.

Fig. 6.8.—The classification tree of the Xaceae (Example 6.3).

Xus Yus Zus

3

3

15
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Fig. 6.10.—A phylogenetic hypothesis of Recent tetrapod relationships (Exercise 6.1).

Fig. 6.9.—Three classifications of Recent tetrapod vertebrates (Exercise 6.1).

Lissamphibia
Reptilia
     Chelonia
     Lepidosauria
     Crocodylia
Aves
Mammalia

Lissamphibia
Mammalia
Chelonia
Lepidosauria
Crocodylia
Aves

Tetrapoda
     Lissamphibia
     Amniota
          Mammalia
          Reptilia
               Chelonia
               Sauria
                    Lepidosauria
                    Archosauria
                         Crocodylia
                         Aves
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Tetrapod limbs

Pedicellate teeth

Feathers

Diapsid skull

Shell

“Right-handed” circulatory system

Hair
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Long hard palate

Hooked 5th metatarsal
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EXERCISE 6.2.—Phylogeny of the land plants.

Use the following classification.

Division Bryophyta
Class Anthoceropsida
Class Marchantiopsida
Class Bryopsida

Division Tracheophyta
Subdivision Psilotophytina
Subdivision Lycopodophytina
Subdivision Sphenophytina
Subdivision Pteridophytina
Subdivision Spermatophytina

Class Cycadopsida
Class Pinopsida
Class Ginkgopsida
Class Gnetopsida
Class Angiospermopsida

For the phylogenetic tree, see Fig. 6.11.

CONSTRUCTING PHYLOGENETIC  CLASSIFICATIONS

There are two basic ways to construct phylogenetic classifications. First, one can
consistently place sister groups in the classification at the same rank or rank equivalent.
In such a classification, every hypothesized monophyletic group is named. If this
manner of classifying is adopted, rank within a restricted part of the classification
denotes relative time of origin. Second, one can adopt a set of conventions designed to
reflect the branching sequence exactly but not require that every monophyletic group be
named.

We consider it beyond the scope of this workbook to detail the controversies
surrounding such topics as the suitability of Linnaean ranks versus indentation or
numerical prefixes for constructing classifications (reviewed in Wiley, 1981a). Instead,
we will briefly review some of the basics of phylogenetic classification and provide a
summary of some of the conventions you might use in constructing your classifications.
This will be followed by some exercises designed to demonstrate when certain conven-
tions might be used.

Rules of Phylogenetic Classifications

Rule 1.—Only monophyletic groups will be formally classified.
Rule 2.—All classifications will be logically consistent with the phylogenetic hypoth-

esis accepted by the investigator.
Rule 3.—Regardless of the conventions used, each classification must be capable of

expressing the sister group relationships among the taxa classified.
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Fig. 6.11.—A phylogenetic hypothesis of selected land plant relationships (Exercise 6.2). (Name
endings for terminal taxa correspond to classification for convenience.)

Conventions

We list the conventions used by Wiley (1981a) in his “annotated Linnaean hierarchy”
system.

Convention 1.—The Linnaean system of ranks will be used.

This is one of the controversial conventions. There have been many attempts to
substitute other means of subordinating taxa, and some of these attempts are mentioned
at the end of this chapter. None are, in our opinion, satisfactory. However, the Linnaean
system of ranks is, itself, a convention. There is no biological or scientific imperative
for using Linnaean ranks.

Convention 2.—Minimum taxonomic decisions will be made to construct a
classification or to modify existing classifications.
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This convention can be met when making a new classification by rejecting redundant
taxon names. For example, if a family has only one genus, do not coin a subfamily
name. The subfamily name would be redundant with the family name. Of course, the
family name is redundant, in terms of its diagnosis, with the genus. But, the family
name serves another purpose, to place the genus within the context of its phylogenetic
relationships with other genera. When converting existing classifications, make every
effort to retain well known taxon names at their traditional ranks. This may or may not
be possible.

Convention 3.—Taxa forming an asymmetrical part of a phylogenetic tree may be
placed at the same rank and sequenced in their order of branching (Nelson, 1972).
When such a list is encountered, the sequence of the list denotes the sequence of the
branching.

This convention can be used by an investigator who decides that he will not name
every monophyletic group but still wishes to preserve Rule 3. This convention is

frequently termed the “listing convention” or “sequencing convention” and was first
proposed by Nelson (1972) (Fig. 6.12).

Convention 4.—Taxa whose relationships are polytomous will be placed sedis
mutabilis at the same rank (Wiley, 1979).

This convention must be used if the sequence convention is used because you must
be able to discriminate a list that translates into a series of dichotomies from a list that
translates into a polytomy (Fig. 6.13).

Convention 5.—Monophyletic taxa of uncertain relationships will be placed incertae
sedis at a level in the hierarchy where their relationships are known with some
certainty.

This convention covers the situation where a small monophyletic group is thought to
belong to, say, an order but cannot be placed in any suborder, family, etc., within that
order.

Fig. 6.12.—A hypothesis of the relationships and a classification of three vertebrate groups, illustrat-
ing the sequencing convention (Convention 3).

Subphylum Vertebrata
     Infraphylum Myxiniodea
     Infraphylum Petromyzontia
     Infraphylum Gnathostomata

Myxiniodea Petromyzontia Gnathostomata
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Subphylum Vertebrata
     Infraphylum Myxiniodea (sedis mutabilis)
     Infraphylum Petromyzontia (sedis mutabilis)
     Infraphylum Gnathostomata (sedis mutabilis)
          Superclass Chondrichthys
          Superclass Teleostomi
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Fig. 6.13.—Another hypothesis of the relationships among vertebrates, with gnathostomes resolved
into its two major subgroups, illustrating the sedis mutabilis convention (Convention 4).

Convention 6.—A group whose qualities are not known may be included in a phyloge-
netic classification if it is treated as incertae sedis and its name is put in shutter quotes
(quotation marks) (Wiley, 1979).

One of the common problems you will encounter is the leftover taxa (candidates for
incertae sedis under Convention 5) and “taxa” that are peripheral to your problem and
are neither demonstrably monophyletic, paraphyletic, or (rarely) polyphyletic. Some-
times, these groups are well known. To omit them would leave the classification
incomplete and make a statement that you know they are not monophyletic; to put them
in without qualification would imply that you consider them monophyletic. The shutter
quotes carry the connotation that all included subtaxa are presently incertae sedis at the
place in the hierarchy where you put the “taxon.” This convention should be used with
caution. For example, it is not advisable to treat a polytomy occurring in the middle of
a phylogenetic hypothesis (see Fig. 6.14) with this convention.

Fig. 6.14.—Relationships among a hypothetical group of genera, illustrating the unwise use of
shutter quotes (Convention 6).

Aus Bus
“Cus ”

Dus Eus
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Convention 7.—Fossil taxa will be treated differently than Recent taxa. Fossil taxa will
always be sequenced with their Recent relatives following Convention 3. If they are
ranked, their status as fossils will be denoted by placing a dagger or cross symbol
before the rank (Nelson, 1972). Alternatively, they may be given the neutral rank of
“plesion” (Patterson and Rosen, 1977). As natural taxa, monophyletic fossil taxa may
stand incertae sedis or sedis mutabilis, just as any Recent natural taxon.

Wiley’s original conventions (Wiley, 1979, 1981a) incorporated only the plesion
convention. The convention as stated here is less restrictive, but still keeps our ever-
shifting understanding of the relationships of fossil groups from continually changing
the hierarchical classifications of Recent groups. Figure 6.15 illustrates two ways of
classifying some fossil mammals with their Recent relatives.

Infradivision Theria
     Plesion Kueneotherium
     Plesion Symmetrodonta
     Plesion Dryolestoidea
     Plesion Paramus
     Supercohort Marsupialia
     Supercohort Eutheria

Infradivision Theria
    †Supercohort Kueneotheria
    †Supercohort Symmetrodontia
    †Supercohort Dryolestia
    †Supercohort Paramia
      Supercohort Marsupialia
      Supercohort Eutheria

Infradivision Theria
     Supercohort Marsupialia
     Supercohort Eutheria

a

b c

Fig. 6.15.—Three classifications of some mammals (see Convention 7). a. Classification containing
only groups with Recent species. b. “Major” fossil groups added to the Recent classification using the
plesion convention. c. The same groups added but using the listing and dagger conventions.

Convention 8.—Stem species (ancestral species) are placed in classifications in paren-
theses beside the names of taxa they gave rise to or taxa containing their descendants,
as appropriate. A stem species can be inserted into the hierarchy in one of three ways.
1) A stem species of a suprageneric taxon will be placed in a monotypic genus and
inserted in the hierarchy beside the name of the taxon that contains its descendants. 2)
A stem species of a genus will be placed in that genus and inserted beside the genus
name. 3) The stem species of a species within a genus will be placed in that genus and
inserted beside the species name.

Stem species, as Hennig (1966) recognized, are equivalent to the supraspecific taxa
that contain their descendants. This convention treats stem species in exactly this
manner. We illustrate this convention with the hypothetical ancestor, recently “discov-
ered,” of the Sarcopterygii (Fig. 6.16).
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Convention 9.—A taxon of hybrid origin will be indicated by placing the names of its
parental species in parentheses beside the taxon’s name. If the taxon is placed beside
one of the parental taxa, its sequence in a list carries no connotation of branching
sequence relative to taxa of “normal” origin.

Wiley (1981a:226–227) suggested that hybrids between species in different genera
should be placed in a third genus. This is not necessary, but you should not place the
hybrids in both genera if you do not wish to name a third genus because it might cause
confusion regarding the actual number of species that exist. There are several ways this
convention can be used. One way is shown in Fig. 6.17. You might also try listing the
hybrid taxa under, say, the genus name and then proceed with the species of nonhybrid

Fig. 6.16.—A phylogeny of teleostome vertebrates and a classification illustrating the ancestor
convention (Convention 8).
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Superclass Teleostomi
     Class Actinopterygii
     Class Sarcopterygii (Sarcopterygius primus)
          Subclass Actinistia
          Subclass Dipnoiformes
               Infraclass Dipnoi
               Infraclass Choanata

Fig. 6.17.—A phylogeny of the hypothetical species of the genus Mus, with a classification illustrat-
ing the hybrid taxon convention (Convention 9).

Genus Mus
     M. kus
     M. lus
     M. mus (M. lus × M. nus)
     M. nus
     M. ous
     M. pus
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us
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us

M. p
us
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origin using other conventions. The following classification of some species of the lizard
genus Cnemidophorus shows a really nasty case handled in this manner.

Genus Cnemidophorus
species of hybrid origin:

C. uniparens (inornatus × gularis × inornatus)
C. neomexicanus (inornatus × tigris)
C. laredoensis (sexlineatus × gularis)
C. “ tesselatus”  A–B (“ tesselatus”  C–E × sexlineatus)
C. “ tesselatus” C–E (tigris × septemvittatus)

C. tigris species group
C. tigris

C. sexlineatus species group
sexlineatus squadron

C. sexlineatus
C. inornatus

gularis squadron
C. gularis
C. septemvittatus

This convention also works for taxa of symbiotic origin, except that the usual “×”
sign that indicates hybrids is replaced by a “+” sign to indicate the “additive” nature of
the resulting organism.

Quick Quiz—Taxonomy vs. Systematics

The Central Names Committee of the National Mugwort Society announces that it has
accepted your recent phylogenetic study of spiny-toed mugworts, except that all of your
higher order categories have been collapsed to subgenera. What should you do?

Convention Exercises

The following exercises are designed to give you some practice in using the conven-
tions outlined above. These exercises are rather different from the exercises in the
previous chapters because of the nature of the rules and the fact that ranks are relative.
Also, note that the names of taxa are letters. You may use the letters as is, or if your
instructor wishes, use them as the root to which a correct ending is added.

EXERCISE 6.3.—From the phylogenetic tree in Fig. 6.18, do the following:

1. Use the sequence convention at every opportunity to produce a classification
beginning at the hierarchical rank of order. For higher group names, use the following
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A B C D E F M N O P Q R S

Fig. 6.18.—A phylogeny of the hypothetical order A–S (Exercise 6.3).

convention. For a group composed of A, B, C, and D, use A–D; for a group composed of
A and B, use AB, etc.

2. Produce a second classification without using the sequencing convention, that is,
by naming every branch point. For example, A–F is an order with two suborders, F and
A–E. Don’t forget to rank all sister groups at the same rank.

3. Count the number of hierarchical levels you save by using the sequencing
convention.

EXERCISE 6.4.—From the phylogenetic tree of the hypothetical order A–U in Fig.
6.19, use Conventions 3, 4, and 5 to classify the members of the group using order,
suborder, family, subfamily, and genus.

Fig. 6.19.—A phylogeny of the hypothetical order A–U (Exercise 6.4). The terminal taxa are genera.

?
?
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A B C D E F G M P Q R S T U
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EXERCISE 6.5.—From the phylogenetic tree in Fig. 6.20, do the following:

1. Naming every branch point, classify the fossil taxa without  using Convention 7.
2. Classify the Recent taxa first and then add the fossil taxa into the classification

using Convention 7.
3. Briefly compare the two results in terms of hierarchical levels used and the

magnitude of change in the classifications brought about by shifting the relationships of
one fossil species.

Fig. 6.20.—A phylogenetic hypothesis of the relationships among genera of the hypothetical order
Tusiformes, including Recent and fossil groups (Exercise 6.5).

EXERCISE 6.6.—The very distinctive flightless cormorant.

The Galapagos Cormorant is very distinctive in that unlike the rest of the members of
the family Phalacrocoracidae, it has small nonfunctional wings, peculiar wing feathers,
and a massive bill. It was considered so distinctive that it was placed in its own genus,
Nannopterum (literally “tiny wings”).

1. Derive a phylogenetic tree from Table 6.2. The characters were polarized using
the method of Madison et al. (1984) and the OG vector.

2. Evaluate the traditional classification below in terms of its consistency with the
phylogeny.

Phalacrocorax africanus
P. pygmaeus
P. penicillatus
P. carbo
P. auritus
P. olivaceus

Nannopterum harrisi

?

?

†X

A B C †E †F †ND Q R SPM O
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3. Construct a new classification if necessary.

CHAPTER NOTES AND REFERENCES

1. The criterion of logical consistency has also been discussed by Wiley (1981b,
1987a, 1989).

2. The literature on biological classification and its relationship to evolution is huge.
The texts mentioned in Chapter 1, as well as the pages of Systematic Zoology, provide
an introduction.

3. For an excellent introduction to some problems perceived in using the Linnaean
system in phylogenetic classifications and a review of some of the proposed solutions,
see Griffiths (1976). There are three basic options for adopting a set of conventions
similar to that outlined here. First, one could simply use an unannotated Linnaean
system of categories and name every branch. Second, one could adopt a numbering
sequence (Hennig, 1981; Løvtrup, 1973). Third, one could abandon both numbering
and prefixes and classify by pure indentation (cf. Gauthier et al., 1988).

QUICK  QUIZ  ANSWERS

Taxonomy vs. Systematics

Relax. It’s the relationships that count for the systematist, not the names. Anyway, science by
committee is for administrators and the faint hearted, not for you. Continue on as before.

Table 6.2.—Data matrix for cormorant genera Phalacrocorax and Nannopterum (Exercise 6.6) (data
from Siegel-Causey, 1988).

Transformation series
Taxon 8 15 17 30 51 80 82 86 93

OG 0 0 0 0 0 0 0 0 0
P. africanus 1 0 0 0 0 0 0 0 0
P. auritus 0 0 0 0 1 1 1 0 1
P. carbo 0 0 0 1 0 1 0 0 1
N. harrisi 0 1 0 0 0 1 0 1 0
P. olivaceus 0 0 0 0 1 1 0 0 1
P. penicillatus 0 0 0 0 0 1 0 1 0
P. pygmaeus 1 0 1 0 0 0 0 0 0
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CHAPTER 7

COEVOLUTIONARY STUDIES

Phylogenetic trees can be used in a variety of ways in evolutionary biology. Many of
these applications involve comparing the degree to which the history of one group
coincides with the history of the geographic areas in which its members reside or with
the histories of other groups. Brooks (1985) suggested two basic reasons why a species
might live where it lives or be associated with the particular species it is associated with.
A species may live in a certain geographic area because its ancestor lived in that area
and the descendant evolved there. Alternatively, the species may have evolved else-
where and dispersed into the area where it now resides. In the first case (association by
descent), we would expect the history of the species to coincide with the history of the
area; whereas in the second (association by colonization), we would not. Likewise,
two or more species that exist in a close ecological association may be associated
because their ancestors were associated, or they may be associated because they
evolved in association with other species and subsequently “switched allegiances.” In
the first case, we would expect the histories of the taxa involved in the association to
coincide (to be congruent); whereas in the second case, we would not expect to find
such congruence. Taxa that show historical congruence either with geographic areas or
with other taxa are said to exhibit cospeciation patterns. Phylogenetic systematic
methods can help distinguish associations due to ancestral association from associa-
tions due to dispersal and colonization.

In this chapter, we will learn how to use the results of phylogenetic analyses to study
other aspects of the evolution of taxa. The major skills you will learn are 1) how to code
the entire phylogenetic tree of a clade and 2) how to use the resulting matrix to study
problems concerning biogeographic or coevolutionary aspects of the evolution of the
clade or clades in the study.

CODING PHYLOGENETIC  TREES

Biogeographic and coevolutionary studies are concerned with the correlation of one
set of data with another. For this correlation, the data can be partitioned into indepen-
dent and dependent variables. For example, if we wish to study the relationships among
a number of biogeographic areas based on the species that occur in these areas, we
could consider the areas the independent variables and the phylogeny of the species the
dependent variables. As another example, we might wish to assess the amount of
cospeciation that has occurred during the evolution of a clade of parasites and their
hosts. The relationships among the hosts would be considered the independent vari-
ables, and the relationships within the clade of parasites would be considered the
dependent variables. The “fit” would be a function of the correlation between the host
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phylogeny (analyzed independently) and the parasite phylogeny. Another way we could
use coded trees is to arrive at a hypothesis about the relationships of areas or hosts. We
can code a tree in the following manner.

1. Label all nodes on the phylogenetic tree (Fig. 7.1). The tree will now consist of the
branching structure, the terminal taxa, and labels for the ancestral nodes.

Table 7.1.—Data matrix of the inferred distributions for taxa in Fig. 7.1.

Taxa
Area A. aus A. bus A. cus X Y

1 1 0 0 0 1
2 0 1 0 1 1
3 0 0 1 1 1

A. aus A. bus A. cus

X

Y

Fig. 7.1.—The relationships among three hypothetical species, with labels (X, Y) for their ancestral
nodes.

2. Prepare a list of the occurrence of each terminal taxon relative to the independent
variable. In this case the independent variables are areas of occurrence.

Area 1: Aus aus
Area 2: Aus bus
Area 3: Aus cus

3. Begin constructing a matrix (Table 7.1). By convention, rows are the independent
variables (areas), and columns are the dependent variables (taxa). Each row is com-
posed of binary values that can be inferred from the original phylogenetic tree. In our
case, we have three rows (areas) and five columns (one for each branch and internode).
Assign to a cell the value “1” if either a taxon or its ancestor can be inferred to occur or
have occurred in the area. In biogeographic studies, the assumption is that the ranges of
ancestors are the additive ranges of their descendants. The same assumptions are used
in coevolutionary studies; for example, the range of an ancestral parasite is the additive
range of its descendants relative to its hosts. In our simple example, Area 2 would be
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scored “1” for the A. bus and the X and Y columns, reflecting the observed occurrence
of A. bus in Area 2 and the inferred occurrence of X (A. bus’s ancestor) and Y (the
ancestor of the entire species group) in the same area. Let’s take a closer look at this
matrix. The first thing that should strike you is that there are three different sorts of data.
1) There are observational scores. Area 1 is scored “1” for A. aus as a matter of
observation. 2) There are inferential scores. Area 1 has been scored “1” for hypothetical
ancestor Y because, under the assumption of additive ranges, we can infer that the
ancestor of the clade was in Area 1 based on the presence of one of its descendants (A.
aus). 3) There are negative observational scores. Area 1 is scored “0” for the A. bus cell
because A. bus was not observed in Area 1. From this, we can infer that X was also
absent from Area 1.

4. You now have a choice of methods, depending on what you know about the
independent variables. If the relationships among the independent variables are not
known, you can use the data to estimate these relationships. In this case, solve the tree
for the dependent variable using the data from the independent variable. Do this just as
if the coded tree were a matrix of characters for the areas. If an independent estimate of
the independent variable is available, map the occurrence of taxa, including ancestors,
on the tree that already exists for the areas. You can then use various tree statistics to
judge the amount of coevolution or vicariance that can be inferred.

When you think about it, it doesn’t make much sense to solve the relationships of the
dependent variable with the information based on a single clade. Why? Because a single
clade is to an independent variable what a single transformation series is to a clade.
Therefore, using only single clades, we are restricted to an a priori hypothesis of the
relationships among the independent variables. Before we discuss methods for han-
dling more than one clade, let’s look at a real example involving only one group.

Quick Quiz—Biogeography

1. What are the relationships of areas 1, 2, and 3 implied by the distributions of the three
species of Aus?

2. If you only used “presence and absence” data, what would you conclude about the
relationships of these areas?

Example 7.1.—Biogeography of the Amphilinidea.

Amphilinids are a small group of parasitic flatworms found on several continents
(Bandoni and Brooks, 1987). Their phylogenetic relationships are shown in Fig. 7.2.
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JAP FOL ELO LIG AFR

U S

T

V

Fig. 7.2.—The relationships among five species of parasitic flatworms (from Bandoni and Brooks,
1987) (Example 7.1). See text for abbreviations.

1. Label the nodes (already shown in Fig. 7.2).
2. Prepare a list showing the occurrence of each of the terminal taxa.

Amphilina japonica (JAP): North America (NA)
A. foliacea (FOL): Eurasia (EU)
Gigantolina elongata (ELO): Australia (AS)
Schizochoerus liguloideus (LIG): South America (SA)
S. africanus (AFR): Africa (AF)

3. Prepare a table of areas × taxa. Note that we have carefully rearranged the order of
the taxa to put ancestral columns as close to relevant descendants as possible (Table
7.2). This is not necessary, but it helps when you enter data and proof the matrix.

4. We now have a choice. We can either solve the relationships of the areas or we can
map the information in our matrix onto a previous hypothesis of area relationships. Or,
we can do both and then compare the results. In this case, geologic evidence has been
used to produce an “area cladogram” showing the historical connections among the

Table 7.2.—Data matrix of the inferred distributions of the Amphilinidea (Example 7.1).

Taxa†
Area* JAP FOL U LIG AFR S ELO T V

NA 1 0 1 0 0 0 0 0 1
EU 0 1 1 0 0 0 0 0 1
SA 0 0 0 1 0 1 0 1 1
AF 0 0 0 0 1 1 0 1 1
AS 0 0 0 0 0 0 1 1 1

* NA = North America, EU = Eurasia, SA = South America, AF = Africa, AS = Australia.
† JAP = Amphilina japonica, FOL = A. foliacea, LIG = Schizochoerus linguloideus, AFR = S. africanus, ELO

= Gigantolina elongata. S–V are ancestral taxa.
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NA EU SA AFAS

Fig. 7.3.—The relationships among five continents based on geologic evidence and the relationships
among amphilinid flatworms. See text for abbreviations.

areas (Fig. 7.3). When we solve the relationships among the areas based on the area/
taxon matrix, we find the same hypothesis. Thus, the relationships among areas as
determined from geologic data and from amphilinid phylogeny are congruent.

We may also estimate the level of congruence by mapping (fitting) the data for
amphilinids directly onto the geologic hypothesis of the relationships among the
continents. This approach treats the tree of continents as the independent variable. The
matrix derived from the dependent variable (the continent × amphilinid matrix) could
then be fitted to the hypothesis of continental relationships. This is easily accomplished
in most computer programs such as PAUP, where we build a matrix, specify a particular
tree (not necessarily derived from the matrix), and fit the matrix to the tree. We can then
calculate an appropriate summary statistic. In this case, we select the CI, deleting the
distributions of terminal taxa, and obtain a perfect fit (CI = 1.0).

Note on single group analysis. Although this kind of analysis was originally
designed to investigate biogeographic and coevolutionary problems, you might find it
suitable for exploring other kinds of problems. For example, you and Dr. Fenetico have
reconstructed different phylogenies for the saber-toothed cnidaria. You might use your
tree as the independent variable and Dr. Fenetico’s data as the dependent variables. One
very pleasing result might be the discovery that his data fit your tree better than they do
his tree.

Single Tree Exercises

In the exercises below, 1) code the tree, and 2) solve the relationships among the
independent variables. Do not be confused by distributions and area labels. Each
species occupies a single area and can be given a single label regardless of the number
of drainages and states in which it occurs. We are simply presenting real examples.
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EXERCISE 7.1.—Luxilus zonatus species group.

This is a group of three species of North American minnows recently revised by
Mayden (1988a).

Luxilus cardinalis: lower Arkansas River drainage, Arkansas, Kansas, and Okla-
homa, and Red River tributaries of the Ouachita highlands, Oklahoma (Area 1)

L. pilsbryi: White and Little Red rivers, Missouri and Arkansas (Area 2)
L. zonatus: Ozark Plateau, north and east of L. pilsbryi in Missouri and Arkansas

(Area 3)

Luxilus cardinalis is the sister of L. pilsbryi, and L. zonatus is the sister of this pair.

EXERCISE 7.2.—Fundulus nottii species group.

The Fundulus nottii species group consists of five North American topminnows with
distributions shown below. (Fundulus blairae is actually more widespread than the
information given, occurring along the northern Gulf Coast in sympatry with both F.
nottii and eastern populations of F. escambiae.)

F. lineolatus (LIN): Florida peninsula and Atlantic Coast drainages (Area 1)
F. escambiae (ESC): eastern Gulf Coast (Area 2)
F. nottii (NOT): central Gulf Coast (Area 3)
F. blairae (BLA): lower Mississippi River and western Gulf Coast (Area 4)
F. dispar (DIS): upper Mississippi River (Area 5)

Wiley (1977) hypothesized the following relationships for these species:

((LIN(ESC, NOT))(BLA, DIS)).

More Than One Group

This method can also be used to compare the degree of congruence between geo-
graphic history and phylogeny for more than one group at a time. We treat each
phylogenetic tree as a single chunk of the area × taxon matrix and perform a multigroup
analysis. Analysis of multiple clades in the real world will almost certainly be more
complicated than single clade analysis for two reasons. 1) Clades are not always found
in all areas analyzed. For example, although family Aidae has members in all four of the
areas you wish to study, family Bidae has members in only three of the areas. 2) Some
clades may have members in two or more areas represented by single species in other
clades. These are known as the “missing taxon” and “widespread species” problems.
Both require us to consider character coding strategies that are not necessary when we
perform single group analysis. Before attacking these problems, let us consider the
simple example of two groups inhabiting the same region. We will use the classic
hypothetical case presented by Humphries and Parenti (1986) and analyzed by Wiley
(1987c, 1988a,b).
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Example 7.2.—Two-group analysis.

Consider the hypothetical example below for two taxa, Lizard (L) and Frog (F),
inhabiting the same areas (from Humphries and Parenti, 1986). The relationships of
both groups are shown in Fig. 7.4. Their biogeographic ranges are listed below.

L1: Australia (AS)
L2: New Guinea (NG)
L3: South America (SA)
L4: Africa (AF)
F1: AS
F2: NG
F3: SA
F4: AF

L1 L2 L3 L4

Lx

Ly

Lz Fz

F2 F3 F4

Fy

Fx

F1

a b

Fig. 7.4.—Relationships and labeled ancestral nodes for a group of (a) lizards (L1–L4) and a group of
(b) frogs (F1–F4) (from Humphries and Parenti, 1986) (Example 7.2).

1. Label each ancestor on the tree of each group. (Fig. 7.4).
2. Produce a binary coded matrix just as you would for a single group, but with both

groups in the matrix (Table 7.3).

Table 7.3.—Data matrix for lizards (L1–L4) and frogs (F1–F4) and their ancestral taxa (x, y, z) (Ex-
ample 7.2).

Taxa
Area* L1 L2 Lx L3 Ly L4 Lz F1 F2 Fx F3 Fy F4 Fz

AS 1 0 1 0 1 0 1 1 0 1 0 1 0 1
NG 0 1 1 0 1 0 1 0 1 1 0 1 0 1
SA 0 0 0 1 1 0 1 0 0 0 1 1 0 1
AF 0 0 0 0 0 1 1 0 0 0 0 0 1 1

* AS = Australia, NG = New Guinea, SA = South America, AF = Africa.
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3. Solve the area relationships. To accomplish this, we must have an equivalent of
character polarity decisions. This equivalent is the “zero vector ancestor” for each
group. Specifically, we consider all “1” values as analogous to apomorphies by inspect-
ing the outgroup and seeing that it does not occur in the area or by assuming that any
distributional data we might gather that relate to events prior to the origin of the
ancestor of each group is irrelevant. Just as in character analysis, the confidence we
have in our hypothesis of area relationships depends on the confidence we have in our
polarity assignments. The solution to this matrix is shown in Fig. 7.5. This is the history
of vicariance based on phylogenetic and biogeographic data.

AS NG SA AF

AS + NG

AS + NG + SA + AF

AS + NG + SA

Fig. 7.5.—The relationships among four continents as shown by the lizard and frog phylogenetic and
biogeographic data, with “ancestral areas” labeled at each node.

Missing Taxa

Not all clades are distributed over all areas. There are several reasons why a
representative of a group may not be in an area. 1) The group might be absent because
the ancestor of the group never inhabited the area. 2) The group might be absent
because a member of the group went extinct in the area. 3) The group might really be
present but was not sampled. The correct explanation for the absence of a group from an
area will vary from group to group. Several strategies might be employed to deal with
the problem.

Strategy 1.—Throw out the group. This strategy might be employed if one suspects
that sampling effort is so low that the actual distributions of members of the group are
not well enough known to employ them in an analysis.

Strategy 2.—Use the group. This strategy can be used if the investigator has reason to
believe that the distribution data she has are robust enough to be employed. Sampling
has been thorough enough so that the distribution of the group is fairly well to very
well known. Any absence due to sampling error is probably randomized over all
groups. Hypotheses of absence due to extinction or ancestral distribution (i.e.,
ancestor was not distributed over all areas included in the analysis) are viable
explanations.
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Note the difference in the two strategies. If you employ the group but then conclude
that the anomalies in its distribution relative to the general hypothesis you generate
were due to sampling error, it would have been wiser not to use the group in the first
place. Unfortunately, there are no hard and fast rules for employing either strategy.
Strategy 2 is the best to use when there is any question about actual distributions. The
only effect of introducing such a group, if the distribution of its members are at variance
with the general hypothesis generated, should be an increase in tree length.

In Example 7.3, we will assume that you are satisfied that strategy 2 has been
employed. Your assumption is that although absences may be due to sampling error,
you have made some effort to discover members of groups that are missing in particular
areas.

Example 7.3.—Missing taxa.

Taking the same areas as in Example 7.2, we now consider the distributional data
provided by two additional groups, Bird (B) and Worm (W).

B1: Australia (AS)
B2: New Guinea (NG)
B4: Africa (AF)
W1: AS
W3: South America (SA)
W4: AF

Note that each group is missing a representative in one area. The relationships of these
species are shown in Fig. 7.6. We proceed as follows.

1. Assign ancestors to the tree (Fig. 7.6).
2. Prepare the matrix (Table 7.4). The cells in the matrix that have dashes (–) are

cells for which there are missing data. We have to decide how to code these missing
data. Recall the earlier discussion about observational and inferential data scores.
Turning to the Bx/SA cell in the matrix, if we decide to code the Bx/SA cell as “0,” we

Bx

Bz

B1 B2 B4

Wy

Wz

W1 W3 W4

a b

Fig. 7.6.—The relationships of a group of (a) birds (B) and (b) worms (W), with ancestral nodes
labeled (x, y, z) (Example 7.3).
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are making the explicit inference that the ancestor of Bird was not present in South
America. If we code it as “1,” we are making the explicit inference that there is a
member of Bird in South America or, alternatively, that there was a member of Bird
there and it has gone extinct (i.e., we assign “1” as a phantom code indicating that we
believe there is a missing ancestor and descendant). None of these alternatives are
based on data nor on assumptions about the additive nature of descendant ranges
relative to ancestral ranges. All are reasonable alternative hypotheses, at least at this
stage in our analysis. We can remain neutral to these possibilities by assigning a missing
data code (“?”) to this cell. We proceed to each cell in the matrix and assign the missing
data code to each ancestral column when a member of that group is not present in the
area (Table 7.5).

3. We then solve for the area relationships. When doing this we must take into
account the “missing data” cells and their alternative interpretations under different
kinds of optimization. Figure 7.7 shows three equally parsimonious interpretations
using DELTRAN. Figure 7.7a shows the effect of delaying the “appearance” of Bx. If
this is our choice, then we cannot delay the appearance of Wy. Figure 7.7b shows the
effect of delaying the “appearance” of Wy. If we delay Wy, we cannot delay Bx. Finally,
Fig. 7.7c summarizes the conflict between the distributions of both characters. Note that
in neither case is there direct evidence for the grouping AS+NG+SA. Rather, the
grouping is a by-product of the interactions between character distributions. Also note
that even using DELTRAN neither Bz nor Wz is effectively delayed. This is another
interaction effect. (If you try ACCTRAN, you will find that both Bx and Wy are
successfully accelerated but that the effect is to provide no character support for the
groupings AS+NG or AS+SA.)

Table 7.4.—Data matrix for birds (B1, B2, B4) and worms (W1, W3, W4) and their ancestral taxa (x,
y, z) (Example 7.3).

Taxa
Area* B1 B2 Bx B4 Bz W1 W3 Wy W4 Wz

AS 1 0 1 0 1 1 0 1 0 1
NG 0 1 1 0 1 0 0 – 0 –
SA 0 0 – 0 – 0 1 1 0 1
AF 0 0 0 1 1 0 0 0 1 1

* AS = Australia, NG = New Guinea, SA = South America, AF = Africa.

Table 7.5.—Data matrix from Table 7.4 modified to show neutrality about missing data.

Taxa
Area B1 B2 Bx B4 Bz W1 W3 Wy W4 Wz

AS 1 0 1 0 1 1 0 1 0 1
NG 0 1 1 0 1 0 0 ? 0 ?
SA 0 0 ? 0 ? 0 1 1 0 1
AF 0 0 0 1 1 0 0 0 1 1
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AS NG AF
SAAS NG AFSA

Bz

Wz

Bx

Wy

Bz

Wz

Bx

Wy

Bx

Wy

Bz

Wz

AS NG AF
SA

a b c

Fig. 7.7.—Three alternative trees (a–c) derived from analyzing the bird and worm data. Note that the
synapomorphies supporting AS+NG (tree a) and AS+SA (tree b) are illusions resulting  from “missing
data” cells in the matrix.

EXERCISE 7.3.—Some moths.

Examine the distribution data listed below and the phylogeny shown in Fig. 7.8.

1. Prepare a data matrix for this group using the original four areas (AS, NG, SA,
AF).

M1: AS
M2: NG
M3: SA

2. Add these data to the data concerning Bird and Worm (Table 7.5) and solve the
area relationship problem.

Fig. 7.8.—The relationships among three moths (M) with ancestral nodes labeled (x, y) (Exercise
7.3).

M1 M2 M3

Mx

My
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Widespread Species

A widespread species is one that is found in two or more areas. Obviously, this
designation is relative to the distributions of species in other groups. A group with a
widespread species shows less endemism than a group with different species in all the
areas analyzed. A species might be widespread for several reasons. 1) The species did
not respond to geographic subdivision by speciating (failure to speciate). 2) The species
dispersed into one of the areas (dispersal). 3) The species is really two species, but the
investigator has not detected this fact (identification error).

Given that you have analyzed the phylogenetic relationships among members of the
group carefully and have done your best to identify each species, the only coding
strategy you can employ is to code each species where it occurs. Example 7.4 demon-
strates how to code for such cases.

Example 7.4.—Coding widespread taxa.

Continuing our example from Humphries and Parenti (1986), we consider two
groups having widespread species: Tree (T) and Fish (Fi). The phylogenies of the two
groups are shown in Fig. 7.9. The distribution of species in each group is listed below.

T1: Australia (AS)
T2: New Guinea (NG)
T34: South America (SA), Africa (AF)
Fi14: AS, AF
Fi2: NG
Fi3: SA

We proceed as follows.

1. Assign ancestors to the trees (Fig. 7.9).
2. Prepare the data matrix (Table 7.6). In this case, we will not assume that wide-

spread species are either useful or not useful for solving the area relationships. There-
fore, both the area and the ancestor will be assigned “1” when a descendant is present.

T1 T2 T34 Fi14 Fi2 Fi3

Tx

Ty

Fix

Fiy

Fig. 7.9.—The relationships within a group of (a) trees (T) and (b) fishes (Fi), with ancestral nodes
labeled (x, y) (Example 7.4).
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Table 7.6.—Data matrix for trees (T1, T2, T34) and fish (Fi14, Fi2, Fi3) and their ancestral taxa (x, y)
(Example 7.4).

Taxa
Area* T1 T2 Tx T34 Ty Fi14 Fi2 Fix Fi3 Fiy

AS 1 0 1 0 1 1 0 1 0 1
NG 0 1 1 0 1 0 1 1 0 1
SA 0 0 0 1 1 0 0 0 1 1
AF 0 0 0 1 1 1 0 1 0 1

* AS = Australia, NG = New Guinea, SA = South America, AF = Africa.

AS NG AFSA

Fiy

Tx

T1

Fix

Ty

Fi14 T34

Fi3

Fix

T34

Fi14

T2

Fi2

Fig. 7.10.—A hypothesis of the relationships among four areas with the occurrence of trees and fishes
mapped on the hypothesis. Tick marks denote unique distributions, black dots denote homoplasy.

3. Solve the area relationships. In this case, there are three possible trees, each with
15 steps and a CI of 0.833. Rather than present one or more of these trees, we are going
to map the distributions of members of Tree and Fish onto the area relationships shown
by Lizard and Frog (Example 7.2). This result is shown in Fig. 7.10. (Considering only
the Tree and Fish data, this tree is 13 steps and has a CI of 0.769.)

The tree in Fig. 7.10 reveals some interesting problems. Let us consider the distribu-
tions of T34, Fix, and Fi14 in the light of the three reasons for widespread species listed
above. Reasons 1 and 3 lead you to expect that the species can be mapped as monophyl-
etic on the area cladogram. In neither case, however, will the outcome affect the area
cladogram. Reasons 1 and 2 might be expected if the species in question is paraphyletic
when mapped on the area cladogram. Reason 1 is a little scary because acceptance of
the hypothesis leads to accepting the species as an ancestor. Reason 2 would be
expected if the species is polyphyletic when mapped on the area cladogram. We can be
fairly confident that Fish 14 has dispersed from Australia to Africa, but we are not very
confident that Tree 34 dispersed or simply failed to respond to the vicariance event that
separated South America and Africa.



KU MUSEUM OF NATURAL HISTORY, SPECIAL PUBLICATION No. 19126

EXERCISE 7.4.—Ferns.

Examine the distributional data and phylogeny (Fig. 7.11) for the group Fern (Fe).
Prepare a data matrix for this group. Combine this with the data matrix for Tree and Fish
and solve the area relationships using DELTRAN. Tip:  There are three DELTRAN
trees and three ACCTRAN trees, but solve only for DELTRAN.

Fe12: Australia (AS), New Guinea (NG)
Fe3: South America (SA)
Fe4: Africa (AF)

EXERCISE 7.5.—Combining the matrix.

Combine the matrices for all of the groups inhabiting the four continental regions we
have been working with (a total of eight groups). Solve the area relationships using
DELTRAN. Examine the distribution of each group on the independent variable (the
cladogram of areas) and see if you can detect cases where a strict vicariance interpreta-
tion should not be followed.

Sympatry within a Clade

Sympatry within a clade occurs when two members of the clade inhabit the same
area. How to treat sympatry between members of the same clade is still an open issue,
and we have not designed exercises for this aspect of vicariance biogeography. Three
suggestions have been made. Wiley (1988a) simply coded sympatric members of a
clade as being present in the area. Kluge (1988b) suggested that in such cases one of the
distributional patterns is younger than the origin of the areas. Thus, one of the members
of the clade cannot furnish corroboration for the area hypothesis. This is certainly true,
but the problem is, which member? Brooks (1990) has suggested another strategy,
assigning two codes to the area where two members of the clade are sympatric. So, if

Fex

Fey

Fe12 Fe3 Fe4

Fig. 7.11.—The relationships among three species of ferns (Fe), with ancestral nodes labeled (x, y)
(Exercise 7.4).
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Aus aus and Aus bus both inhabit Area 1, split Area 1 into two areas (1 and 1'). Then find
out where 1' falls out in the analysis. How the two species are related to each other and
how the two areas are related to each other can then be addressed.

THE ANALOGY  BETWEEN PHYLOGENETICS  AND HISTORICAL  BIOGEOGRAPHY

You can see that the computational similarities among phylogenetic systematics,
vicariance biogeography, and studies of coevolution can be very impressive. However,
the biological basis behind each area of study is different. For example, the relationship
between characters and taxa is much more direct than the relationship between areas
and taxa. Look at Fig. 7.10 again. Note that one of the ancestors in the Fish group is
actually plotted as polyphyletic (!). In character analysis we would simply conclude that
the distribution was achieved by convergent evolution. This is allowed. However, the
origin of a single species twice is not allowed. Several authors have called attention to
these problems, including Wiley (1987c), Cracraft (1988), Sober (1988b), and Brooks
(1990).

CHAPTER NOTES AND REFERENCES

1. The use of a matrix to describe the shape of a tree was independently proposed by
Farris (1969), Phipps (1971), and Williams and Clifford (1971); see Farris (1973).

2. We have used additive binary coding throughout this chapter. This is not neces-
sary. Indeed, it is not necessary to enter the terminal taxa into a matrix because these
data do not affect tree topology (cf. Kluge, 1988b; Mayden, 1988b). Further, we suggest
that when you use a suitable computer program, you experiment with inputting your
transformation series in such a manner that evolution is irreversible. See Mayden
(1988b) for a discussion of possible problems in coding characters.

3. Brooks (1981) first proposed a technical solution to Hennig’s parasitological
method, and this led directly to the vicariance biogeographic and coevolutionary
techniques presented here.

4. Biogeographic and coevolutionary techniques are virtually identical, as shown by
Brooks (1985, 1988) and Wiley (1987d). A considerable body of literature on vicariance
biogeographic methods and applications is summarized in Wiley (1988a). Parsimony
methods are discussed in detail by Wiley (1987c, 1988a,b), Zandee and Roos (1987),
and Kluge (1988b). Application of vicariance methods to the study of speciation
include Wiley (1980, 1981a), Cracraft (1983, 1986), Mayden (1985, 1988b), Wiley and
Mayden (1985), Brooks and McLennan (1991), and Siegel-Causey (1991).

5. See McLennan et al. (1988) for an example of the use of behavioral characters.
For a review of a more general use of these methods in coevolutionary studies, see
Brooks and McLennan (1991).
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QUICK  QUIZ  ANSWERS

Biogeography

1. (2+3)+(1). This is a short way to note the relationships.
2. Presence/absence data use only the first three columns of the data matrix (Table 7.1). When you

use only these data, you see that the area relationships are not resolved. So the tree would be 1+2+3. Not
very helpful, is it?
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ANSWERS TO EXERCISES

Two conventions are used in the exercises. For complicated trees, the topology is presented in
parenthetical notation, and the synapomorphies are listed by group and the autapomorphies by terminal
taxon. In a few cases, a tree is so complicated that we present the tree with labeled internodes.
Characters supporting groupings are then shown by internode. IG refers to the ingroup. Characters for
the IG refer to synapomorphies for an entire ingroup.

CHAPTER 2

EXERCISE 2.1.—Analysis of Sus.

Each specific epithet has been abbreviated to its first letter.
1.

OG s t u v w

1-1

((s, t, u, v, w: 1-1)OG)

OG s tu v w

((t, v, w: 2-1)s, u, OG)

2-1

((s: 9-1)OG, t, u, v, w )

OG st u v w

9-1

((s, t, u: 3-1,4-1)OG, v, w )

3-1
4-1

OG s t uv w

7-1

((s, v, w: 7-1)OG, t, u ) 

OG st u v w

((v, w: 8-1)OG, s, t, u ) 

8-1

OG s t u v w

10-1

((t: 10-1)OG, s, u, v, w )

OG s tu v w

12-1

((w: 12-1)OG, s, t, u, v )

OG s t u v w

11-1

((v: 11-1)OG, s, t, u, w )

OG s t vu w

((s, t: 5-1, 6-1)OG, u, v, w )

OG v su tw

5-1
6-1
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2. Topology: (OG(vus, wus)(uus(sus, tus))). Characters: (IG): 1-1; (vus, wus): 2-1; 7-1, 8-1; (uus,
sus, tus): 3-1, 4-1; (sus, tus): 5-1, 6-1; (sus): 7-1, 9-1; (tus): 2-1, 10-1; (vus): 11-1; (wus): 12-1. =
character showing convergence/parallelism or reversal (homoplasies).

3. Tree statistics: CI (tree) = 0.857; length = 14. CI (characters): 1, 3–6, 8–12 = 1.0; 2, 7 = 0.5.

EXERCISE 2.2.—Analysis of Midae.

Each generic name has been abbreviated to its first letter.

1. Hypotheses of synapomorphy: (M, N, O, Q, R): 1-1; (IG): 2-1; (P, Q, R): 3-1; (M, P, Q, R): 4-1; (M,
N, O): 5-1, 10-1, 11-1; (M, N, O, Q): 6-1; (N, O, Q, R): 7-1; (P): 8-1; (M): 9-1.

2. Most parsimonious tree topology: (OG(P(R(Q(M(N, O)))))). Characters: (IG): 2-1, 3-1, 4-1; (R, Q,
M, N, O): 1-1, 7-1; (Q, M, N, O): 6-1; (M, N, O): 3-0, 5-1, 10-1, 11-1; (N, O): 4-0; (P): 8-1; (M): 7-0, 9-
1.

3. Tree statistics: CI (tree) = 11⁄14 = 0.786; length = 14. CI (characters): 1, 2, 5, 6, 8–11 = 1.0; 3, 4, 7 =
0.5.

EXERCISE 2.3.—Analysis of Aus.

Each specific epithet has been abbreviated to its first letter.

1, 2. There are two tree topologies and a total of four trees (two trees for each topology). All four
trees share the following autapomorphies: (a): 6-1; (c): 10-1; (d): 8-1; (e): 9-1. Note that character 7-1 is
homoplasious for both taxa b and e on all four trees.

Tree topology 1: (OG((a, b)c)(d, e)). Synapomorphies for tree 1A—(a, b, c, d, e): 1-1, 2-1; (a, b, c):
3-1; (a, b): 2-0, 5-1. Synapomorphies for tree 1B—(a, b, c, d, e): 1-1; (a, b, c): 3-1; (a, b): 5-1; (d, e): 2-
1, 4-1. Autapomorphies unique for tree 1B—(c): 2-1. CI (characters): 1, 3–6, 8–10 = 1.0; 2, 7 = 0.5.

Tree topology 2: (OG(a, b)(c(d, e))). Synapomorphies for tree 2A—(a, b, c, d, e): 1-1, 3-1; (a, b): 5-
1; (c, d, e): 2-1; (d, e): 3-0, 4-1. Synapomorphies for tree 2B—(a, b, c, d, e): 1-1; (a, b): 3-1, 5-1; (c, d,
e): 2-1; (d, e): 4-1.  Autapomorphies unique for tree 2B—(c): 3-1. CI (characters): 1, 2, 4–6, 8–10 = 1.0;
3, 7 = 0.5.

3. Tree statistics: CI (tree) = 0.833; length = 12.

OG v w u s t

1-1

2-1

7-1

8-1

11-1 12-1

3-1

4-1

5-1
6-1

10-1
7-1

9-1

2-1
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Nodes
TS T U V W OG

1 a a,b b b decisive
2 a a a,b b decisive
3 a a a a,b equivocal
4 a,b a a,b a decisive
5 a a,b b a,b equivocal
6 a,b a a,b b decisive

Nodes
TS M O P Q OG

1 a a,b b b decisive
2 a,b b b b decisive
3 a,b a a,b a decisive
4 a a,b a a decisive
5 a a b a,b equivocal
6 a a,b a,b a,b equivocal

Nodes
TS M N O P Q R OG

1 a a,b b a,b a a decisive
2 b b b b a,b a decisive
3 a,b a a,b a a a decisive
4 b b a,b b a,b a decisive
5 b b a,b a a a decisive
6 b b b a,b a a decisive

Nodes
TS 2 3 4 5 6 OG

3 a,b b b a,b b decisive
4 a a b a,b a decisive

CHAPTER 3

EXERCISE 3.1

Did you label node 1? If so, you’re wrong. Node 1 is the root and you cannot label it without using its
outgroup.

EXERCISE 3.4

EXERCISE 3.3

EXERCISE 3.2

1

2
3

4
5

6

M N O P Q R IG



KU MUSEUM OF NATURAL HISTORY, SPECIAL PUBLICATION No. 19140

Nonadditive binary coding
Taxon m n o p q r s

OG 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0
B 1 0 0 0 1 0 0
C 1 0 0 0 1 0 0
D 1 0 0 0 1 1 0
E 1 0 0 0 1 1 0
F 1 0 0 0 1 0 1
S 1 1 0 0 0 0 0
T 1 1 0 1 0 0 0
U 1 1 0 1 0 0 0
V 1 1 1 0 0 0 0
W 1 1 1 0 0 0 0

Additive binary coding
Taxon Linear m n o

OG 0 0 0 0
A 1 1 0 0
B 2 1 1 0
C 3 1 1 1

Nodes
TS P Q R S T U V W X Y OG

1 a b a,b a a b b a,b a a decisive
2 a,b a a a a b b b b a,b equivocal
3 a a a a,b a b a,b a a a decisive
4 a,b a,b b b b a,b b a,b b b decisive
5 a b b b a,b b b a,b a a decisive
6 a b b b a,b b b b a,b a,b equivocal

EXERCISE 3.5

EXERCISE 3.6

1. Linear coding and additive binary coding.
2. Nonadditive and mixed are not applicable because the character tree is linear.
3. Note that the plesiomorphic character “l” is not listed because its vector is all zeros.

4. Tree: (OG(A(B, C))).

EXERCISE 3.7

1. Nonadditive binary coding.
2. Linear coding and additive binary coding cannot be used because the tree represents a branching

TS. Mixed coding would not save many columns because the tree is symmetrical.
3.

4. Tree: (OG(A(B, C, F(D, E))(S(T, U)(V, W)))).
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Nonadditive binary coding Mixed coding
Taxon n o p q r s t u n, q, s, t r u o, p

OG 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0 0 1 0 0 0
B 1 1 0 0 0 0 0 0 1 0 0 1
C 1 1 1 0 0 0 0 0 1 0 0 2
D 1 1 1 0 0 0 0 0 1 0 0 2
M 1 0 0 1 0 0 0 0 2 0 0 0
N 1 0 0 1 1 0 0 0 2 1 0 0
O 1 0 0 1 0 1 0 0 3 0 0 0
P 1 0 0 1 0 1 0 1 3 0 1 0
Q 1 0 0 1 0 1 1 0 4 0 0 0
R 1 0 0 1 0 1 1 0 4 0 0 0

Characters*
Taxon 1 2 3 4 5 6

OG 0 0 0 0 0 0
L. longipes 0 0 0 0 0 0
L. leyseroides 1 1 1 1 1 1
L. tennella 1 1 1 1 1 1
L. gnaphalodes 1 1 1 1 0 0

* 1 = receptacle, 2 = floret tubules, 3 = pappus type, 4 = achene surface, 5 = pappus scales, 6 = life cycle.

EXERCISE 3.8

1. Nonadditive binary and mixed coding; mixed coding is preferred because it would save columns.
2. Linear and additive coding will not work because the tree represents a branching TS.
3.

4. Tree: (OG(A(B(C, D))(M, N(O, P(Q, R))))).

CHAPTER 4

EXERCISE 4.1.—Bremer’s Leysera data.

1.

2. Specific epithets are abbreviated. Tree: (OG(lo(gn(ten, ly)))). Characters within Lysera: (ly, ten,
gn): 1-1, 2-1, 3-1, 4-1; (ten, ly): 5-1, 6-1. Synapomorphies of Lysera: 2N = 8, solitary capitula on long
peduncle.

EXERCISE 4.2.—Siegel-Causey’s cliff shags.

1. OG vector: 1-0, 2-0/1, 22-0, 36-0/1, 39-0, 40-1, 42-0, 48-0, 63-0, 69-0, 78-0, 79-1, 81-0, 94-0, 97-
0, 100-1, 102-0/1, 110-0, 111-0, 112-0, 114-0, 120-0, 124-0/1, 131-0, 134-0.

2. We did not consider TS 2, TS 36, TS 102, and TS 124 because their character decisions were
equivocal at the OG node.

Some specific epithets are abbreviated. Tree: (OG((pelag, urile)(arist(gaim(punct, feath))))).
Characters: (IG): 97-1; (pelag, urile): 134-1; (arist, gaim, punct, feath): 63-1, 110-1; (gaim, punct,

feath): 39-1, 40-0, 79-0, 94-1, 111-1, 112-1; (punct, feath): 1-1, 78-1; (pelag): 42-1; (urile): 69-1, 120-
1, 131-1; (arist): 22-1, 100-0; (gaim): 48-1, 114-1; (punct): none; (feath): 81-1.
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Transformation series
Taxon 1 2 3 4 5 6

Ancestor (ANC) 0 0 0 0 0 0
longipes (ln) 0 0 0 0 0 0
leyseroides (ly) 1 1 1 1 1 1
tennella (te) 1 1 1 1 1 1
gnaphoides (gn) 1 1 1 1 0 0

ANC A B C

ANC –
A 2 –
B 3 3 –
C 4 4 3 –

3. TS 2 and TS 102 remain equivocal. Character 36-0 is a synapomorphy shared by gaim, punct, and
feath. Character 124-0 is either a homoplasy shared by gaim and feath or a synapomorphy below gaim
that reverses in punct.

EXERCISE 4.3

D(A,B) = ∑ |X(A,i) – X(B,i)|
= |0 – 0| + |1 – 1| + |0 – 1| + |1 – 0| + |1 – 0|
= 3

D(M,B) = 3

EXERCISE 4.4

1. D(M,A) = ∑ |X(M,i) – X(A,i)|
= |1 – 0| + |0 – 1| + |0 – 0| + |0 – 0| + |0 – 0|
= 2

D(M,B) = 3

2. INT(A) = D[A,ANC(A)]
= 2

EXERCISE 4.5.—Bremer’s Leysera data.

1. Construct a data matrix.

2. Calculate initial differences.

D(ANC,ln) = 0
D(ANC,ly) = 6
D(ANC,te) = 6

D(ANC,gn) = 4
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Transformation series
Taxon 1 2 3 4 5 6

ANC 0 0 0 0 0 0
gn 1 1 1 1 0 0
ln 0 0 0 0 0 0
A 0 0 0 0 0 0

3. Add the taxon (ln) with least difference to ancestor (ANC).

D(ly,ln) = 6

D(ly,gn) = 2

D(ly,A) = 6

D(ly,ANC) = 6

Conclusion: add ly to INT (gn)

= 6

 D(ly,ln) + D(ly,A) – D(ln,A)

2
D(ly,INT(ln)) =

6 + 6 – 0

2
= 

= 2

D(ly,INT(gn)) =
 D(ly,gn) + D(ly,A) – D(gn,A)

2

= 
2 + 6 – 4

2

= 6

D(ly,INT(A)) = 
 D(ly,A) + D(ly,ANC) – D(A,ANC)

2

= 
6 + 6 – 0

2

ln (0 0 0 0 0 0)

ANC (0 0 0 0 0 0)

4. Add gnaphaloides.

5. Add either ly or te—let’s use ly.

ln 

ANC

A (0 0 0 0 0 0)

gn (1 1 1 1 0 0)

.
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Transformation series
Taxon 1 2 3 4 5 6

B 1 1 1 1 0 0
te 1 1 1 1 1 1
ly 1 1 1 1 1 1
C 1 1 1 1 1 1

Transformation series
Taxon 1 2 3 4 5 6

A 0 0 0 0 0 0
gn 1 1 1 1 0 0
ly 1 1 1 1 1 1
B 1 1 1 1 0 0

6. Calculate a new ancestor and an intermediate tree.

7. Add tennella in the same manner.

D(te,ly) = 0 D(ln,A) = 0 D[te,INT(gn)] = 2
D(te,gn) = 2 D(B,A) = 4 D[te,INT(ly)] = 0
D(te,B) = 2 D(A,ANC) = 0 D[te,INT(B)] = 2
D(te,ln) = 6 D(ly,B) = 2 D[te,INT( ln)] = 6
D(te,A) = 6 D(gn,B) = 0 D[te,INT(A)] = 6

D(te,ANC) = 6

8. Calculate a new ancestor and find the final tree.

EXERCISE 4.6.—Siegel-Causey’s cliff shags.

1. Calculate differences.

D(OG,pelag) = 4 D(OG,gaim) = 14
D(OG,urile) = 6 D(OG,punct) = 12
D(OG,arist) = 6 D(OG,feath) = 14

Begin with pelag.

pelag

OG

ln

ANC

A

gn

B

ly

C (1 1 1 1 1 1)

te (1 1 1 1 1 1)

ln

ANC

A

gn

B (1 1 1 1 0 0)

ly (1 1 1 1 1 1)
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Transformation series
Taxon 1 2 22 36 39 40 42 48 63 69 78 79 81 94 97 100 102 110 111 112 114 120 124 131 134

OG 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0
pelag 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1
arist 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0
A 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0

2. The next shortest are urile or arist. We picked arist (but it won’t make any difference at the end).

pelag

OG

A

arist

3. Now pick urile.

D[urile,INT(A)] = 5 D(urile,pelag) = 4
D(urile,A) = 5 D[urile,INT(arist)] = 5

D(urile,OG) = 6 D(urile,arist) = 10
D[urile,INT(pelag)] = 3

Join urile to pelag by ancestor B. Calculate B.

pelag

OG

A

arist

urile

B

Transformation series
Taxon 1 2 22 36 39 40 42 48 63 69 78 79 81 94 97 100 102 110 111 112 114 120 124 131 134

A 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0
pelag 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1
urile 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1
B 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1
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Transformation series
Taxon 1 2 22 36 39 40 42 48 63 69 78 79 81 94 97 100 102 110 111 112 114 120 124 131 134

A 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0
punct 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0
arist 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0
C 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0

4. Pick punct to add next.

D(punct,OG) = 12 D[punct,INT(arist)] = 9 D(punct,arist) = 12
D[punct,INT(A)] = 11 D(punct,A) = 11 D[punct,INT(B)] = 11

D(punct,B) = 13 D[punct,INT(urile)] = 13* D(punct,urile) = 16*
D[punct,INT(pelag)] = 13* D(punct,pelag) = 14*

(*As per instructions, it is not necessary to calculate these distances because the distance of punct to INT(arist)
is less than the distance between punct and INT(B). Therefore, there is no need to calculate distances between
punct and terminal taxa above B.)

Add punct to arist by ancestor C. Calculate C.

pelag aristurile

OG

A

B C

punct

5. Pick gaim to add next.

D(gaim,OG) = 14 D[gaim,INT(A)] = 13 D(gaim,A) = 13
D[gaim,INT(B)] = 13 D(gaim,B) = 15 D[gaim,INT(C)] = 11

D(gaim,C) = 11 D[gaim,INT(punct)] = 4 D(gaim,punct) = 6
D[gaim,INT(arist)] = 10 D(gaim,arist) = 12

Add gaim to punct through D. Calculate D.

pelag aristurile

OG

A

B C

punct

D

gaim
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Transformation series
Taxon 1 2 22 36 39 40 42 48 63 69 78 79 81 94 97 100 102 110 111 112 114 120 124 131 134

D 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0
punct 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0
feath 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0
E 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0

Transformation series
Taxon 1 2 22 36 39 40 42 48 63 69 78 79 81 94 97 100 102 110 111 112 114 120 124 131 134

C 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0
punct 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0
gaim 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
D 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0

6. Finally (!) add feath to the tree.

D(feath,OG) = 14 D[feath,INT(A)] = 13 D(feath,A) = 13
D[feath,INT(B)] = 13 D(feath,B) = 15 D[feath,INT(C)] = 11

D(feath,C) = 11 D[feath,INT(D)] = 4 D(feath,D) = 4
D[feath,INT(punct)] = 2 D(feath,punct) = 2 D[feath,INT(gaim)] = 3

D(feath,gaim) = 6

Add feath to punct through E. Calculate E.

pelag aristurile

OG

A

B C

punct

D

gaimE

feath

0 0 1 1 0 0

0

0,1

1

0,1
 0

Step 1

0 0 1 1 0 0

0

1

1

0
 0

Step 2

EXERCISE 4.7
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EXERCISE 4.8

DELTRAN Optimization

0
X

1
O

0
M

1
N

A  0 
B  1

C  0,1

Step 1: Label ancestor nodes and 
assign root state.  (This is a trivial 
task.)

Step 2: Reroot at B, the next ancestor 
up from the root, and recalculate the 
MPR. MPR(B) = (0,1).

X  0

A  0 O  1

M  0 N  1

C  0,1

B  0,1

B  0,1

C  0,1

M  0 N  1

Step 3:  Reroot at C, the last ancestor 
in the tree; recalculate the MPR.
MPR(C) = (0,1).

Step 4: Label all ancestor nodes with 
appropriate MPRs.

0
X

1
O

0
M

1
N

A  0 
B  0,1

C  0,1

Step 5: Assign ancestor states on
upward pass.

0
X

1
O

0
M

1
N

A  0 
B  0

C  0

Step 6:  Place character changes on 
appropriate branches following the
state of the ancestral node.

0
X

1
O

0
M

1
N

3-1
3-1 4-1

4-1

EXERCISE 4.10

1 0 0 1 0 0 1

0

0
0

0 0

0

1 1 0 0 0 1 0 1

1
0

0

0

0
1

1

EXERCISE 4.9
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ACCTRAN Optimization

Step 1: Assign ancestral states on 
downward pass.

0
X

1
O

0
M

1
N

A  0 
B  1

C  0,1

Step 2: Assign states on upward
pass.

0
X

1
O

0
M

1
N

A  0 
B  1

C  1

Step 3:  Place character states on 
tree following states of ancestral
nodes.

3-0

0
X

1
O

0
M

1
N

4-0

DELTRAN Optimization

Step 1:  Calculate MPRs for each ancestor node.

0 0 0 1 1 0 0

A
B

C
D

E

F
MPR(A) = (0)
MPR(B) = (0)
MPR(C) = (0)
MPR(D) = (0,1)
MPR(E) = (0,1)
MPR(F) = (0)

Step 2:  Label each ancestor node with appropriate 
MPR.

0 0 0 1 1 0 0

0
0

0
0,1

0,1
0

Step 3: Assign state of ancestor node by upward 
pass rules.

0 0 0 1 1 0 0

0
0

0
0

0
0

Step 4:  Label tree following the ancestor character 
states.

0 0 0 1 1 0 0

1-1 1-1

EXERCISE 4.11
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ACCTRAN Optimization

Step 1:  Assign ancestor states by downward pass 
rules.

0 0 0 1 1 0 0

0
0

0,1
1

0,1
0

Step 2:  Assign states of ancestor nodes by upward 
pass rules.

0 0 0 1 1 0 0

0
0

0
1

1
0

Step 3:  Label tree following ancestor states.

0 0 0 1 1 0 0

1-0

1-1

CHAPTER 5

EXERCISE 5.1

Tree: (X(A(B, C))). M = 8, S = 8, G = 10, tree length = 8, CI = 1.0, R = 1.0, RC = 1.0.

EXERCISE 5.2

M = 5, S = 6, G = 9, tree length = 6, CI = 0.833, R = 0.750, RC = 0.625.

EXERCISE 5.3

M = 8, S = 9, G = 11, tree length = 9, CI = 0.889, R = 0.667, RC = 0.593.

EXERCISE 5.4

Tree: (OG(O(M, N))). M = 10, S = 12, G = 15, tree length = 12, CI = 0.833, R = 0.600, RC = 0.500.

EXERCISE 5.5

Tree: (OG(A((B, C)((D, E)F)))). M = 11, S = 15, G = 26, tree length = 15, CI = 0.733, R = 0.733, RC =
0.538.

EXERCISE 5.6

Strict consensus tree: (A, B(C, D, E)).

EXERCISE 5.7

Adams consensus tree: (A(B, C, D)).
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EXERCISE 5.8

Adams consensus tree: (A, B(C, D, E)).

EXERCISE 5.9

Majority consensus tree: ((W, V)(X(Y, Z))).

EXERCISE 5.10

Strict consensus tree: ((A, B, C)(D, E, F, G, H)).
Adams consensus tree: ((A, B, C)(D, E, H(F, G))).
Majority consensus tree: ((A, B, C)(D(E, F(G, H)))).

CHAPTER 6

EXERCISE 6.1.—Phylogeny of the Recent tetrapod vertebrates.

Classification a: (Lissamphibia, Aves, Mammalia(Chelonia, Lepidosauria, Crocodylia)). 45 trees
possible. Classification is logically inconsistent with the phylogeny. “Reptilia” includes Chelonia,
Lepidosauria, and Crocodylia.

Classification b: (Lissamphibia, Mammalia, Chelonia, Lepidosauria, Crocodylia, Aves). 945 trees
possible. Classification is logically consistent with the phylogeny.

Classification c: Tree topology is identical to that of the tree in Fig. 6.10. One tree possible.
Classification is logically consistent with the phylogeny.

EXERCISE 6.2.—Phylogeny of the land plants.

Tree: ((Anthoceropsida, Marchantiopsida, Bryopsida)(Psilotophytina,  Lycopodophytina,
Sphenophytina, Pteridophytina(Cycadopsida, Pinopsida, Ginkgopsida, Gnetopsida,
Angiospermopsida))). Bryophyta includes Anthoceropsida, Marchantiopsida, and Bryopsida.
Tracheophyta includes Psilotophytina, Lycopodophytina, Sphenophytina, Pteridophytina, and
Spermatophytina. Spermatophytina includes Cycadopsida, Pinopsida, Ginkgopsida, Gnetopsida, and
Angiospermopsida. 33,075 trees possible. Classification is logically inconsistent with the phylogeny.

EXERCISE 6.3

We have used each letter on the tree to stand for a genus. It doesn’t matter if you picked different
categories or different endings to the names. Instead, look for conformity in the number of categories. It
shouldn’t matter for systematic relationships if you have different names or endings.

1. Sequence convention:

Order A–S
Family A–F

Genus F
Genus E
Genus D
Genus C
Genus B
Genus A
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Family M–S
Genus M
Genus N
Genus O
Genus P
Genus Q
Genus R
Genus S

Hierarchical levels: 3.

2. All branch points named:

Order A–S
Suborder A–F

Family F
Genus F

Family A–E
Subfamily E

Genus E
Subfamily A–D

Tribe D
Genus D

Tribe A–C
Subtribe C

Genus C
Subtribe AB

Genus A
Genus B

Suborder M–S
Family M

Genus M
Family N–S

Subfamily N
Genus N

Subfamily O–S
Tribe O

Genus O
Tribe P–S

Subtribe P
Genus P

Subtribe Q–S
Supergenus Q

Genus Q
Supergenus RS

Genus R
Genus S

Hierarchical levels: 8.

3. Five hierarchical levels are saved by using the sequencing convention and not naming all the
branch points.
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EXERCISE 6.4

We have used each letter on the tree to stand for a genus. It doesn’t matter if you picked different
categories or different endings to the names. Instead, look for conformity in the number of categories.

Order A–U
Genus N (incertae sedis)
Suborder M (sedis mutabilis)

Genus M
Suborder A–H (sedis mutabilis)

Genus H (incertae sedis)
Family G

Genus G
Family F

Genus F
Family A–E

Subfamily C (sedis mutabilis)
Genus C

Subfamily D (sedis mutabilis)
Genus D

Subfamily E (sedis mutabilis)
Genus E

Subfamily AB
Genus A
Genus B

Suborder P–U (sedis mutabilis)
Family P

Genus P
Family Q

Genus Q
Family R

Genus R
Family S–U

Genus S (sedis mutabilis)
Genus T (sedis mutabilis)
Genus U (sedis mutabilis)

EXERCISE 6.5

1. Order Tusiformes
†Genus X (incertae sedis)
Suborder A–F
†Family F

Genus F
Family A–E
†Subfamily E

Genus E
Subfamily A–D

Tribe D
Genus D
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Tribe A–C
Genus A (sedis mutabilis)
Genus B (sedis mutabilis)
Genus C (sedis mutabilis)

Suborder M–S
Genus P (incertae sedis)
Family M–O

Tribe O
Genus O

Tribe MN
Genus M

†Genus N
Family Q–S

Tribe Q
Genus Q

Tribe RS
Genus R
Genus S

2. Order Tusiformes
†Genus X (incertae sedis)
Suborder A–F

Plesion F
Plesion E
Family D

Genus D
Family A–C

Genus A (sedis mutabilis)
Genus B (sedis mutabilis)
Genus C (sedis mutabilis)

Suborder M–S
Genus P (incertae sedis)
Family M–O

Tribe O
Genus O

Plesion N
Tribe M

Genus M
Family Q–S

Tribe Q
Genus Q

Tribe R
Genus R

Tribe S
Genus S

3. In #1, 6 categories and 29 entries are required in the classification; in #2, only 5 categories (a
plesion doesn’t count) and 26 entries. On a strictly numerical basis, use of Convention 7 is more
justified than not using it. Use of plesions simplifies the classification without implying possibly
unknown relationships.
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EXERCISE 6.6

1.

py
gm

ae
us

afr
ica

nu
s

ha
rri

si

pe
nic

illa
tus

oli
va

ce
us

au
ritu

s

ca
rb

o

17-1

80-1

93-1

30-1

82-1

51-1

86-1

15-1

8-1

2.

N. harrisi P. penicillatus

P. carbo

P. auritus
P. olivaceus

P. africanus

P. pygmaeus

Venn diagram of consensus

Venn diagram of traditional classification

Venn diagram of phylogeny

N. harrisi P. penicillatus

P. carbo

P. auritus
P. olivaceus

P. africanus

P. pygmaeus

N. harrisi P. penicillatus

P. carbo

P. auritus

P. olivaceus

P. africanus

P. pygmaeus
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2. Area tree: ((1, 2)3).

EXERCISE 7.2.—Fundulus nottii species group.

Each of the specific epithets used in this exercise have been abbreviated to their first three letters. W,
X, Y, and Z are ancestral taxa.

Taxa
Area LIN ESC NOT W X BLA DIS Y Z

1 1 0 0 0 1 0 0 0 1
2 0 1 0 1 1 0 0 0 1
3 0 0 1 1 1 0 0 0 1
4 0 0 0 0 0 1 0 1 1
5 0 0 0 0 0 0 1 1 1

Taxa
Area zonatus y cardinalis pilsbryi x

1 0 1 1 0 1
2 0 1 0 1 1
3 1 1 0 0 0

3. There are many classifications depending upon the nature of the categories you wish to use. Here is
one, using the listing convention.

Firstgenus
F. pygmaeus
F. africanus

Secondgenus
S. penicillatus
S. harrisi

Thirdgenus
T. carbo
T. auritus
T. olivaceus

CHAPTER 7

EXERCISE 7.1.—Luxilus zonatus species group.

1. Taxon tree: ((cardinalis, pilsbryi)zonatus). Ancestral taxa are labeled x and y.

Area tree: ((1(2,3))(4,5)). Trees are congruent.
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Taxa
Area Fe12 Fe3 Fex Fe4 Fey

AS 1 0 1 0 1
NG 1 0 1 0 1
SA 0 1 1 0 1
AF 0 0 0 1 1

EXERCISE 7.4.—Ferns.

1.

Taxa
Area M1 M2 Mx M3 My

AS 1 0 1 0 1
NG 0 1 1 0 1
SA 0 0 0 1 1
AF 0 0 ? 0 ?

EXERCISE 7.3.—Some moths.

1.

2. One tree: (((AS, NG)SA)AF).
ACCTRAN optimization. Synapomorphies—(AS, NG): Mx-1; (AS, NG, SA): Bx-1, Wy-1; (AS,

NG, SA, AF): Bz-1, Wz-1, My-1. Autapomorphies—(AS): B1-1, W1-1, M1-1; (NG): B2-1, M2-1;
(SA): M3-1, W3-1; (AF): B4-1, W4-1.

DELTRAN optimization. Synapomorphies—(AS, NG): Mx-1, Bx-1; (AS, NG, SA): My-1, Wy-1;
(AS, NG, SA, AF): Bz-1, Wz-1. Autapomorphies identical to those of ACCTRAN.

2. DELTRAN optimization. Tree 1: (((AS, NG)SA)AF). Synapomorphies—(AS, NG): Fe12-1, Tx-
1, Fix-1; (AS, NG, SA): Fex-1; (AS, NG, SA, AF): Ty-1, Fiy-1, Fey-1. Autapomorphies—(AS): T1-1,
Fi14-1; (NG): T2-1, Fi2-1; (SA): T34-1, Fi3-1, Fe3-1.

Tree 2: (((AS, NG)AF)SA). Synapomorphies—(AS, NG): Fe12-1, Tx-1, Fex-1; (AS, NG, AF): Fix-1;
(AS, NG, AF, SA): Fey-1, Fiy-1, Ty-1. Autapomorphies—(AS): Fi14-1, T1-1; (NG): Fi2-1, T2-1; (AF):
T34-1, Fe4-1, Fi14-1; (SA): T34-1, Fi3-1, Fe3-1, Fex-1.

Tree 3: ((AS, NG)(SA, AF)). Synapomorphies—(AS, NG): Tx-1, Fix-1, Fe12-1, Fex-1; (SA, AF):
T34-1; (AS, NG, AF, SA): Ty-1, Fiy-1, Fey-1. Autapomorphies—(AS): T1-1, Fi14-1; (NG): T2-1, Fi2-1;
(SA): Fi3-1, Fe3-1, Fex-1; (AF): Fi14-1, Fix-1, Fe4-1.

Tree statistics: CI = 0.833, length = 18, R = 0.500, RC = 0.417.
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EXERCISE 7.5.—Combining the matrix.

The black dots are homoplasies. The arrow suggests moving ancestral taxon Fiy-1 up one branch. If
ancestor Fiy-1 moves up, then ancestor Fix-1 should be removed from Africa because by placing
ancestor Fiy-1 higher it can no longer give rise to Fix-1 in Africa. The higher position of Fiy-1 also
suggests that Fi14-1 dispersed to Africa. The T34-1 distribution may represent dispersal or persistence
of a widespread species. If dispersal, the direction cannot be determined.

F3-1
L3-1
W3-1
M3-1
T34-1
Fe3-1
Fi3-1

F4-1
L4-1
B4-1
W4-1
T34-1
Fe4-1
Fi14-1
Fix-1

Fx-1
Lx-1
Bx-1
Mx-1
Tx-1
Fe12-1
Fix-1

Fy-1
Ly-1
Wy-1
My-1
Fex-1

Fz-1
Lz-1
Bz-1
Wz-1
Ty-1
Fey-1
Fiy-1

F1-1
L1-1
B1-1
W1-1
M1-1
T1-1
Fi14-1

F2-1
L2-1
B2-1
M2-1
T2-1
Fi2-1

AF SA NG AS
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